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Johannes Christoph Müller – Dissertation abstract

This thesis is divided into two parts dealing with the optimization problems in Markov

decision processes (MDPs) and different neural network based numerical solvers for

partial differential equations (PDEs).

In Part I we analyze the optimization problem arising in (partially observable) Markov

decision processes using tools from algebraic statistics and information geometry, which

can be viewed as neighboring fields of applied algebra and differential geometry, respec-

tively. Here, we focus on infinite horizon problems and memoryless stochastic policies.

Markov decision processes provide a mathematical framework for sequential decision

making on which most current reinforcement learning algorithms are built. They formal-

ize the task of optimally controlling the state of a system through appropriate actions.

For fully observable problems, the action can be selected knowing the current state of

the system. This case has been studied extensively and optimizing the action selection

is known to be equivalent to solving a linear program over the (generalized) stationary

distributions of the Markov decision process, which are also referred to as state-action

frequencies.

In Chapter 3, we study partially observable problems where an action must be chosen

based solely on an observation of the current state, which might not fully reveal the under-

lying state. We characterize the feasible state-action frequencies of partially observable

Markov decision processes by polynomial inequalities. In particular, the optimization

problem in partially observable MDPs is described as a polynomially constrained linear

objective program that generalizes the (dual) linear programming formulation of fully

observable problems. We use this to study the combinatorial and algebraic complexity

of this optimization problem and to upper bound the number of critical points over the

individual boundary components of the feasible set. Furthermore, we show that our

polynomial programming formulation can be used to effectively solve partially observ-

able MDPs using interior point methods, numerical algebraic techniques, and convex

relaxations. Gradient-based methods, including variants of natural gradient methods,

have gained tremendous attention in the theoretical reinforcement learning community,

where they are commonly referred to as (natural) policy gradient methods.

In Chapter 4, we provide a unified treatment of a variety of natural policy gradient

methods for fully observable problems by studying their state-action frequencies from

the standpoint of information geometry. For a variety of NPGs and reward functions,

we show that the trajectories in state-action space are solutions of gradient flows with

respect to Hessian geometries, based on which we obtain global convergence guarantees

and convergence rates. In particular, we show linear convergence for unregularized

and regularized NPG flows with the metrics proposed by Kakade and Morimura and

co-authors by observing that these arise from the Hessian geometries of conditional



entropy and entropy respectively. Further, we obtain sublinear convergence rates for

Hessian geometries arising from other convex functions like log-barriers. We provide

experimental evidence indicating that our predicted rates are essentially tight. Finally,

we interpret the discrete-time NPG methods with regularized rewards as inexact Newton

methods if the NPG is defined with respect to the Hessian geometry of the regularizer.

This yields local quadratic convergence rates of these methods for step size equal to the

inverse penalization strength, which recovers existing results as special cases.

Part II addresses neural network-based PDE solvers that have recently experienced a

tremendous growth in popularity and attention in the scientific machine learning com-

munity. We focus on two approaches that represent the approximation of a solution of a

PDE as the minimization over the parameters of a neural network: the deep Ritz method

and physically informed neural networks.

In Chapter 5, we study theoretical properties of the boundary penalty for these methods

and obtain a uniform convergence result for the deep Ritz method for a large class of

potentially nonlinear problems. For linear PDEs, we estimate the error of the deep Ritz

method in terms of the optimization error, the approximation capabilities of the neural

network, and the strength of the penalty. This reveals a trade-off in the choice of the

penalization strength, where too little penalization allows large boundary values and too

strong penalization leads to a poor solution of the PDE inside the domain. For physics

informed networks, we show that when working with neural networks that have zero

boundary values also the second derivatives of the solution are approximated where

otherwise only lower order derivatives are approximated.

In Chapter 6, we propose energy natural gradient descent, a natural gradient method

with respect to second order information in the the function space, as an optimization

algorithm for physics-informed neural networks and the deep Ritz method. We show that

this method, which can be interpreted as a generalized Gauss-Newton method, mimics

Newton’s method in function space except for an orthogonal projection onto the tangent

space of the model. We show that for a variety of PDEs, natural energy gradients converge

rapidly and approximations to the solution of the PDE are several orders of magnitude

more accurate than gradient descent, Adam and Newton’s methods, even when these

methods are given more computational time.
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CHAPTER 1

Introduction

This thesis is divided into two parts: In Part I, we analyse the optimization problem

encountered in (partially observable) Markov decision processes in state-action space us-

ing tools from algebraic statistics as well as information geometry, which can be viewed as

adjacent fields of applied algebraic and differential geometry, respectively. Part II is con-

cerned with the optimization problems encountered in neural network based approaches

for solving partial differential equations. We describe the content as well as the relation

between these topics in more detail below.

Part I: Geometry of Markov decision processes. Markov decision processes were

established as a mathematical framework for sequential decision making in the late 1950s

and early 1960s with Richard Bellman, Ronald A. Howard, David Blackwell and Cyrus

Derman being among the early pioneers of this field [46, 45, 142, 55, 94, 54, 56, 93]. Since

their introduction they have received considerable attention from the theoretical side.

They also lie at the heart of many modern algorithms that led to important advancements

in the field of robotics [232] and reinforcement learning [276] which was lately also used

in the development of ChatGPT [227]. The task in a Markov decision process (MDP) is to

control the state 𝑠𝑡 of a system through suitable actions 𝑎𝑡 in such a way such that the

states 𝑠0 , 𝑠1 , . . . evolve optimally in some notion. An action-selection strategy, which is

commonly referred to as a policy, consists of the specification of the probability 𝜋(𝑎 |𝑠)
to select action 𝑎 when the system is currently in state 𝑠. Following a policy 𝜋 yields

random sequences 𝑆0 , 𝑆1 , . . . and 𝐴0 , 𝐴1 , . . . of states and actions. A common criterion

for optimality is the infinite horizon reward, which in the mean reward formulation takes

the form

(1.1) 𝑅(𝜋) = E𝜋

[
lim

𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝑟(𝑆𝑡 , 𝐴𝑡)
]
,

where 𝑟(𝑠, 𝑎) describes how good the action 𝑎 is when in state 𝑠 and E𝜋 denotes the expec-

tation when the actions are selected according to the policy 𝜋. For the maximization of

the reward function 𝑅 over all policies, a variety of now classic methods have been devel-

oped, most notably value iteration, policy iteration and linear programming approaches,

see Section 2.4. Gradient based methods, including variants of natural gradient methods

for reward maximization, were pioneered in [277, 40, 39, 153, 206, 208] and have recently

gained fast growing attention from the theoretical reinforcement learning community. In

Chapter 4 we provide an overview of policy gradient methods and study them from a

stand point of information geometry.

Karl Johan Åström extended the framework of MDPs to model for sequential decision

problems with uncertainty about the state 𝑠, which led to the notion of partially observable
Markov decision processes (POMDPs) [22]. Here, the action 𝑎𝑡 is selected based on an
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observation 𝑜𝑡 that is made from the state 𝑠𝑡 . Intuitively, it is harder to make optimal

decisions when there is uncertainty about the underlying state [180]. This is also reflected

in the computational complexity of the optimization problem, which is NP-hard [228,

286] whereas fully observable MDPs can be solved in polynomial time [309]. In many

applications the underlying state is not known exactly when selecting an action. For

example a human or a robot has to act purely on its sensations or rather the history

of sensations. In partially observable environments it is beneficial to base the decision

on all previous observations, or a sufficient statistic thereof, as they might reveal more

information about the current state of the system compared to the most recent observation.

Various techniques for the optimization of such decision rules have been proposed, which

are often based on the formulation of the underlying belief state MDP, see for example

articles [272, 254] for surveys of these approaches. However, the storage of the entire

sequence of observations would require infinite memory, which is infeasible to implement

in practice and the optimization of history dependent policies is known to be undecidable

for infinite horizons [186, 73]. Therefore, the maximization of the reward function in

POMDPs within the smaller class of policies with finite or no memory1 was posed as an

important open problem at the 29th Conference on Learning Theory (COLT 2016) [25].

When optimizing memoryless policies in a POMDP the methods developed for believe

state MDPs and MDPs in general are not applicable and very few approaches exist, see

Section 2.4. Chapter 4 is dedicated to the study of exactly this optimization problem from

the standpoint of algebraic statistics.

Throughout this thesis we analyse Markov decision processes via their state-action

frequencies, which generalize the concept of stationary distributions of the underlying

Markov process. For example, the mean reward 𝑅(𝜋) of a policy 𝜋 can be computed

according to

(1.2) 𝑅(𝜋) =
∑
𝑠,𝑎

𝑟(𝑠, 𝑎)𝜂𝜋(𝑠, 𝑎),

where 𝜂𝜋 is the stationary distribution over states and actions, referred to as the state-

action frequency, which is given by

(1.3) 𝜂𝜋(𝑠, 𝑎) = lim

𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

P𝜋(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎),

where P𝜋(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) denotes the probability that at time 𝑡 the system is in state 𝑠

and action 𝑎 is selected when following the policy 𝜋. Since the reward of a policy is a

linear function of the stationary distribution induced by the policy, the maximization of

the reward 𝑅 can be studied and solved over the stationary distributions. We refer to this

ansatz as reward optimization in state-action space (or shortly ROSA) as the stationary

distributions are probability distributions over pairs of states and actions. The objective

in state-action space is linear and hence the complexity of the optimization problem is

determined by the geometry of the set of stationary distributions. The geometry of this

set was first studied in systematic fashion by Cyrus Derman who showed that for fully

observable MDPs it is given by a polytope [93]. For partially observable problems a

1Note that finite memory can be augmented into the environment and hence often memoryless policies

are studied, see for example [179, 231, 145]
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decomposition of the set of feasible stationary distributions into infinitely many convex

pieces with dimensions controlled by the degree of observability of the model has been

given in [203], however, a more explicit description remained elusive.

In Chapter 2, we provide a self-contained introduction and overview over existing

solution methods; in addition we perceive the reward function as a rational function

in the entries of the policy and bound the degree of this rational function in terms of

the observation mechanism where the degree essentially corresponds to the number

of states that can lead to a particular observation, see Theorem 2.25. We use this to

establish an explicit version of the line theorem due to [81], see Theorem 2.28, and to

provide an algebraic proof for the existence of optimal policies, which are deterministic

on all observations that identify the state, which has previously been shown in [203], see

Theorem 2.30. In Section 2.4 we give an overview of classical solution methods of MDPs

with emphasis on value iteration, policy iteration and linear programming. In particular,

we bound the number of iterations required by value iteration and policy iteration to

generate an optimal policy in terms of the minimum distance of the value function of

suboptimal deterministic policies to the optimal value function, see Theorem 2.50 and

Theorem 2.52, respectively. This bound depends on the geometry of the set of value

functions rather than the size of the Markov decision process, as is the case with existing

bounds, and cannot be derived from, nor does it imply, such bounds.

In Chapter 3, we study the geometry of the set of (generalized) stationary distribution,

i.e., state-action frequencies, of a partially observable Markov decision process. In Sec-

tion 3.2 we extend the classic result by Cyrus Derman [93] who characterized the stationary

distributions of fully observable MDPs as a polytope and the analysis in [203] by providing

a characterization based on polynomial inequalities of the feasible state-action frequen-

cies inside this polytope. This characterization is formulated for general polynomially

constrained policy models, see Theorem 3.18, where we derive explicit expressions of the

defining polynomial inequalities under a rank assumption on the observation kernel, see

Subsection 3.2.2. For deterministic observations we show that the feasible state-action

frequencies are given by the intersection of a product of determinantal varieties of rank

one matrices with the polytope of state-action frequencies, see Theorem 3.25. Further, we

study the feasible state-action frequencies of multi-agent problems and provide explicit

characterizations via polynomial conditions, see Subsection 3.2.4. Our description of fea-

sible state-action frequencies yields a reformulation of the reward optimization problem

as a linear objective problem over a polynomially constrained subset of the simplex, which

can be regarded as a generalization of the linear programming formulation of MDPs. Us-

ing tools from applied algebraic geometry we describe the combinatorial and algebraic

complexity of the optimization problem. We obtain upper bounds on the number of

critical points of the reward function over the individual faces of the domain of the opti-

mization problem, see Section 3.3. Further, we demonstrate that this reformulation of the

reward optimization problem as a linear objective polynomially constrained program can

be used to solve POMDPs effectively by the means of interior point methods, numerical

algebraic approaches and convex relaxations, see Section 3.4. We find that using interior

point methods in state-action space is fast and stable even for large discount factors where
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many optimizer relying on the policy suffer from instability. A benefit of numerical alge-

braic techniques and convex relaxation is that they are able to provide globally optimal

solutions.

Chapter 4 is concerned with natural policy gradient methods for fully observable

Markov decision processes where once again we choose to work in state-action space. We

show that the dynamics of Kakade’s NPG and Morimura’s NPG solve a gradient flow

with respect to the Hessian geometries of conditional entropic and entropic regulariza-

tion of the reward (Sections 4.2.2 and 4.2.3 and Proposition 4.13). Leveraging results on

gradient flows in Hessian geometries, we derive linear convergence rates for Kakade’s

and Morimura’s NPG flow for the unregularized reward, which is a linear and hence not

strictly concave function in state-action space, and also for regularized reward, see The-

orems 4.26 and 4.27 and Corollaries 4.33 and 4.34. Further, for a class of NPG methods,

which correspond to 𝛽-divergences and which generalize Morimura’s NPG, we show sub-

linear convergence in the unregularized case and linear convergence in the regularized

case, see Theorem 4.27 and Corollary 4.34, respectively. For an overview of the conver-

gence rates established in this work see Table 4.1 in Section 4.5. We complement our

theoretical analysis with experimental evaluation, which indicates that the established

linear and sub-linear rates for unregularized problems are essentially tight. For discrete-

time gradient optimization, our ansatz in state-action space yields an interpretation of

the regularized NPG method as an inexact Newton iteration if the step size is equal to the

inverse regularization strength. This yields a relatively short proof for the local quadratic

convergence of regularized NPG methods with Newton step sizes, see Theorem 4.36.

This recovers as a special case the local quadratic convergence of Kakade’s NPG under

state-wise entropy regularization previously shown in [71].

Part II: Neural network based PDE solvers. The second part of this thesis is devoted

to both the theoretical aspects of as well as development of a natural gradient method for

neural network based numerical solvers for partial differential equations (PDEs). Here,

we consider the so called deep Ritz method (DRM) as well as physics informed neural networks
(PINNs) [110, 237]. For both methods, it is the goal to approximate the solution 𝑢∗ of a

PDE by a function 𝑢𝜃 computed by some neural network with parameters 𝜃. Consider

the Poisson equation

−Δ𝑢 = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω,
(1.4)

where Ω ⊆ R𝑑 and 𝑓 : Ω→ R is a square integrable function. The objective function used

in the deep Ritz method for the optimization of the parameters 𝜃 of the neural networks

is given by

(1.5) 𝐿𝐷𝑅𝑀(𝜃) =
1

2

∫
Ω

|∇𝑢𝜃 |2d𝑥 −
∫
Ω

𝑓 𝑢𝜃d𝑥 + 𝜆 ·
∫
𝜕Ω
𝑢2

𝜃d𝑠

for some 𝜆 > 0. PINNs work with the following objective function

(1.6) 𝐿𝑃𝐼𝑁𝑁 (𝜃) =
∫
Ω

|Δ𝑢𝜃 + 𝑓 |2d𝑥 + 𝜆
∫
𝜕Ω
𝑢2

𝜃d𝑠.
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The deep Ritz method is inspired by the variational formulation of the PDE that charac-

terizes the solution 𝑢∗ of (1.4) as the unique minimizer of

(1.7) 𝐸𝐷𝑅𝑀(𝑢) =
1

2

∫
Ω

|∇𝑢 |2d𝑥 −
∫
Ω

𝑓 𝑢d𝑥

over all (sufficiently smooth) functions with zero boundary values. In contrast, PINNs

use that 𝑢∗ is uniquely characterized by 𝐸𝑃𝐼𝑁𝑁 (𝑢) = 0, where

(1.8) 𝐸𝑃𝐼𝑁𝑁 (𝑢) =
1

2

∫
Ω

|Δ𝑢 + 𝑓 |2d𝑥 + 𝜆
∫
𝜕Ω
𝑢2

for any 𝜆 > 0. In the last years these approaches have enjoyed tremendous attention

as they offer the promise of performing well in the numerical approximation of high

dimensional problems, which arise in optimal control, financial mathematics and quan-

tum mechanics [129]. However, it has been documented that they often fail to produce

highly accurate solutions even for simple problems as (stochastic) gradient descent meth-

ods saturate, which limits the adhoc applicability of these approaches for settings that

require reliable solutions. This observation is what sparked our interest in this topic

and therefore it is our main motivation to contribute to the theoretical understanding of

the different factors influencing the error of these method as well as the development of

efficient optimizers.

In Chapter 5, we study theoretical properties of these methods and obtain a uniform

convergence result for the deep Ritz method for a large class of potentially nonlinear

problems, see Theorem 5.1. For linear PDEs, we establish an error estimate, which

informally reads as

(1.9) ∥𝑢𝜃 − 𝑢∗∥𝐻1(Ω) ≾
√

opt. error+𝜆 · appr. error + 𝜆−1 ,

where opt. error denotes the error of the optimization process of the parameters of the

neural network and appr. error denotes the approximation error of the used network, see

Theorem 5.3. This reveals the trade-off in the choice of the penalization strength 𝜆 where

too little penalization allows large boundary values and too strong penalization leads to a

poor solution of the PDE inside the domain. If 𝑓 is 𝑟-times differentiable for this implies

that for 𝑛 ∈ N, there is a ReLU network with 𝒪(log
2

2
(𝑛(𝑟+2)/𝑑) · 𝑛) parameters such that if

𝜆𝑛 ∼ 𝑛𝜎
for 𝜎 = 2𝑟+3

2𝑑
one has for any 𝜌 < 2𝑟+3

4𝑑
that

(1.10) ∥𝑢𝜃𝑛 − 𝑢 𝑓 ∥𝐻1(Ω) ≾
√

opt. error+𝑛−2𝜌 + 𝑛−𝜌 for all 𝜃𝑛 ∈ Θ𝑛 ,

see Theorem 5.4. Note that the solution 𝑢 𝑓 ∈ 𝐻𝑟+2(Ω) can be approximated at a rate

of 𝑂(𝑛−(𝑟+1)/𝑑), see Theorem 5.11, which is a faster rate than the rate 𝑂(𝑛−𝜌) in the

bound (1.10) for the deep Ritz method with successful training. For physics informed

networks, we show that when working with neural networks that have zero boundary

values also the second derivatives of the solution 𝑢∗ are approximated where otherwise

only lower order derivatives are approximated at the same rate, see Theorem 5.5 and

Theorem 5.6, respectively.

Since the theoretical results ensure that successful optimization yields approximate

solutions of the PDE we turn towards the design of efficient optimization schemes in

Chapter 6. Here, we draw inspiration from natural policy gradient methods, which

provide a locally quadratic convergence (for regularized reward). In the context of the
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deep Ritz method and PINNs this leads to a natural gradient induced by the Hessian

geometry of the function space objective, which is often referred to as the energy. We

call this method, which can also be interpreted as a generalized Gauß-Newton method,

energy natural gradient descent and show it mimics Newton’s method in function space

except for an orthogonal projection onto the tangent space of the model, see Theorem 4.2.

We demonstrate that for a variety of PDEs energy natural gradients converge fast and

produce approximations to the solution of the PDE several orders of magnitude more

accurate than gradient descent, Adam and Newton’s method, see Section 6.2. As the low

accuracy of these methods when directly optimized is regarded as a major challenge we

believe that energy natural gradients can represent an important step in the development

of neural network based PDE solvers.

Outlook and open questions. At the end of most sections and chapters we provide a

conclusion and collect directions for future research. Here, we collect the most important

directions for future research.

In Chapter 3, we describe the state-action frequencies of a POMDP as a polynomially

constrained subset within the probability simplex connecting POMDPs to algebraic statis-

tics. We use this description to describe the combinatorial and algebraic complexity of the

optimization problem and to solve POMDPs using interior point methods and numerical

algebriac techniques. During our work a number of natural questions arose where we

list the ones we consider most important here. First, a study for finite memory policies

would nicely complement our results and could provide guidelines for the design of

memory. While the set of value functions of fully observable problems has been studied

and used to design optimal representation, an analysis of the value functions associated

to a POMPD remains elusive but would nicely complement our results. Our bounds on

the number of critical points could be improved by studying the polar degrees of products

of determinantal varities. Where we have described the feasible state-action frequencies

of multi-agent MDPs, the optimization problem arising in multi-agent problems has not

been studied conclusively. In particular, studying the number of critical points could

yield insight into the role of the degree of decentralization for the algebraic complexity

of the problem. Further, our analysis of POMDPs could be extended to cover informa-

tion theoretic objectives like (conditional) entropy and mutual information that play an

important role in regularized MDPs and unsupervised pre-training. In our experiments,

we observed that the sequence of convex relaxations given by the moment-SOS hierarchy

provided exact global solutions in the first order relaxation. We believe that this observa-

tion deserves a closer theoretical analysis. Our description of the state-action frequencies

of POMDPs with deterministic observations via products of varieties of rank one matrices

could provide a starting point for a Riemannian optimization technique for POMDPs

In Chapter 4, we study the geometry of a variety of natural policy gradient methods

for fully observable problems, describe the evolution of their state-action frequencies

by gradient flows with respect to Riemannian geometries on the state-action polytope

and obtain global convergence guarantees for regularized and unregularized problems.

Although, this offers a general framework that recovers known results as special cases,

there are a couple of future directions that deserve further attention. First, our linear con-

vergence guarantees for regularized problems degrade when the regularization strength
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decreases, however our experiments indicate that the actual convergence remains linear.

This gap could be filled with an improved theoretical analysis. Our experiments indicate

that various NPG methods suffer from plateaus, which are induced by the Riemannian

geometry on the state-action polytope. The design of methods that reduce the influence

of these plateaus could have a great impact in the field of reinforcement learning where

policy gradient methods are currently among the most popular approaches. Where we

have studied convergence behavior under the assumption of exact gradient evaluations

it would be interesting to characterize the number of samples required to estimate the

respective notions of natural policy gradients. Finally, a better understanding of the con-

vergence of (natural) policy gradient methods for partially observable problems remains

elusive.

Our theoretical analysis of the boundary penalty method in the context of the deep Ritz

method and physics informed networks in Chapter 5 depends on the boundary values

required to approximate a function where we show that ReLU networks can approximate

functions with exact zero boundary values. Hence, a systematic study of the approxima-

tion rates of ReLU networks with zero boundary values and required boundary values.

Based on our theoretical analysis of the deep Ritz method we suggest a coupling of the

penalization strength with the approximation capabilities of the respective network. This

suggestion remains to be complemented with an empirical study of different penaliza-

tion strategies. Where our results describe the error made by the deep Ritz method and

physics informed neural networks in terms of the optimization error a conclusive analysis

of the convergence behavior of different optimizers remains open.

In Chapter 6 we propose energy natural gradient descent (E-NGD), a natural gradi-

ent method with respect to a Hessian-induced Riemannian metric as an optimization

algorithm for physics-informed neural networks (PINNs) and the deep Ritz method and

demonstrate its ability to produce highly accurate approximations of the solution of the

PDE. Important steps in the pursue of efficient neural network based PDE solvers that

can be applied at an industrial scale include the following. An efficient implementation

of energy natural gradients – possibly in matrix-free fashion – would vastly improve the

applicability of physics informed neural networks to large scale and industrial problems.

Since the convergence of energy natural gradient descent is sensitive to the initialization

we believe that it is important to gain a better understand the behavior of different ini-

tialization schemes. We observed Levenberg-Marquardt type modifications of energy

natural gradient to reduce the plateaus of the energy natural gradient. Where our choices

seemed to work well in practice a systematic procedure for the choice would improve the

applicability of energy natural gradients.

1.1 Notation and conventions

Throughout the thesis we highlight new notation by typesetting it in blue color and italic

and recall our notation where appropriate. We denote the real numbers by R and the

non-negative and positive real numbers by R≥0 and R>0, respectively. For two sets 𝒳 and

𝒴 we denote the set of mappings from 𝒳 to 𝒴 by 𝒴𝒳 , in particular, we denote the free

vector space over 𝒳 by

R𝒳 = {(𝑣𝑥)𝑥∈𝒳 : 𝑣𝑥 ∈ R for all 𝑥 ∈ 𝒳} .
7



When 𝒳 is finite we denote the Euclidean inner product of two vectors 𝑣, 𝑤 ∈ R𝒳 by

⟨𝑣, 𝑤⟩𝒳 =
∑
𝑥∈𝒳 𝑣𝑥𝑤𝑥 and write ∥𝑣∥2 for its Euclidean norm given by

√
⟨𝑣, 𝑣⟩𝒳 , where we

sometimes omit the subscript. More generally, for 𝑝 ∈ [1,∞) the 𝑝-norm of 𝑣 ∈ R𝒳 is

given by ∥𝑣∥𝑝 B 𝑝
√∑

𝑥∈𝒳 |𝑣𝑥 |𝑝 and the ∞-norm is given by ∥𝑣∥∞ B max𝑥∈𝒳 |𝑣𝑥 |. When

𝐻 is a vector space with a scalar product ⟨·, ·⟩, i.e., a positive definite symmetric bilinear

form, we denote the orthogonal complement of a subset 𝑆 ⊆ 𝐻 by 𝐴⊥ B {𝑣 ∈ 𝐻 : ⟨𝑣, 𝑤⟩ =
0 for all 𝑤 ∈ 𝑆}. For a subset 𝐴 ⊆ 𝒳 of a topological space we denote its closure, interior

and boundary by 𝐴, int(𝐴) and 𝜕𝐴. For a subset 𝐴 ⊆ 𝒳 of a metric space (𝒳 , 𝑑) and a

point 𝑥 ∈ 𝒳 we denote the distance of 𝑥 to 𝐴 by dist(𝑥, 𝐴) B inf𝑦∈𝐴 𝑑(𝑥, 𝑦). Note that

dist(·, 𝐴) is Lipschitz continuous with constant one.

For a matrix 𝐴 ∈ R𝑛×𝑚 , we denote its transpose by 𝐴⊤ and a pseudoinverse by

𝐴+ ∈ R𝑚×𝑛 . Note that if 𝐴+ is the Moore-Penrose inverse then 𝐴𝐴+ is the orthogonal

(Euclidean) projection onto the range range(𝐴) = {𝐴𝑥 : 𝑥 ∈ R𝑚} and 𝐴+𝐴 is the orthogo-

nal (Euclidean) projection onto the kernel ker(𝐴) = {𝑥 ∈ R𝑚 : 𝐴𝑥 = 0}. We denote the set

of symmetric and positive definite matrices by S
𝑠𝑦𝑚

>0
.

For functions 𝑓 , 𝑔 we write 𝑓 (𝑡) = 𝑂(𝑔(𝑡)) for 𝑡 → 𝑡0 if there is a constant 𝑐 > 0 such

that 𝑓 (𝑡) ≤ 𝑐𝑔(𝑡) for 𝑡 → 𝑡0, where we allow 𝑡0 = +∞.

We denote the simplex of probability distributions over a finite set 𝒳 by

Δ𝒳 B

{
𝜇 ∈ R𝒳≥0

:

∑
𝑥∈𝒳

𝜇𝑥 = 1

}
.

We refer to Δ𝒳 as the probability simplex and for 𝜇 ∈ Δ𝒳 we sometimes write 𝜇(𝑥) = 𝜇𝑥 for

the mass at 𝑥 ∈ 𝒳. The probability simplex is the convex hull of the Dirac measures {𝛿𝑥}𝑥∈𝒳
that place the entire mass on individual 𝑥 ∈ 𝒳 and hence correspond to the unit vectors,

i.e., 𝛿𝑥(𝑦) = 𝛿𝑥𝑦 = 1 if and only if 𝑥 = 𝑦. A Markov kernel from a finite set 𝒳 to another

finite set𝒴 is a mapping𝑄 ∈ Δ𝒳𝒴 i.e., it corresponds to a stochastic mapping𝑄 : 𝒳 → Δ𝒴 .

An element𝑄 ∈ Δ𝒳𝒴 is a |𝒳| × |𝒴| row stochastic matrix with entries𝑄𝑥𝑦 = 𝑄(𝑦 |𝑥), 𝑥 ∈ 𝒳,

𝑦 ∈ 𝒴 and can be interpreted as conditional probability distributions. We call the set Δ𝒴𝒳
the conditional probability polytope as it is indeed polytope given as a Cartesian product of

probability simplices. Given 𝑄(1) ∈ Δ𝒳𝒴 and 𝑄(2) ∈ Δ𝒴𝒵 their composition into a kernel

𝑄(2) ◦𝑄(1) ∈ Δ𝒳𝒵 from 𝒳 to𝒵 is given by

(𝑄(2) ◦𝑄(1))(𝑧 |𝑥) B
∑
𝑦∈𝒴

𝑄(2)(𝑧 |𝑦)𝑄(1)(𝑦 |𝑥) for all 𝑥 ∈ 𝒳 , 𝑧 ∈ 𝒵.

Given 𝑝 ∈ Δ𝒳 and𝑄 ∈ Δ𝒳𝒴 we denote their composition into a joint probability distribution

by 𝑝 ∗𝑄 ∈ Δ𝒳×𝒴 given by

(𝑝 ∗𝑄)(𝑥, 𝑦) B 𝑝(𝑥)𝑄(𝑦 |𝑥).
The support of a vector 𝑣 ∈ R𝒳 is the set supp(𝑣) = {𝑥 ∈ 𝒳 : 𝑣𝑥 ≠ 0}.

For a vector 𝜇 ∈ R𝒳≥0
we denote its Shannon entropy by

𝐻(𝜇) B −
∑
𝑥

𝜇(𝑥) log(𝜇(𝑥)),

with the usual convention that 0 log(0) B 0. For 𝜇 ∈ R𝒳×𝒴≥0
we denote the 𝑋-marginal by

𝜇𝑋 ∈ R𝒳≥0
, where 𝜇𝑋(𝑥) B

∑
𝑦 𝜇(𝑥, 𝑦). Further, we denote the conditional entropy of 𝜇
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conditioned on 𝑋 by

(1.11) 𝐻(𝜇|𝜇𝑋) B −
∑
𝑥,𝑦

𝜇(𝑥, 𝑦) log

𝜇(𝑥, 𝑦)
𝜇𝑋(𝑥)

= 𝐻(𝜇) − 𝐻(𝜇𝑋).

For any strictly convex function 𝜙 : Ω → R defined on a convex subset Ω ⊆ R𝑑, the

associated Bregman divergence 𝐷𝜙 : Ω ×Ω→ R is given by

𝐷𝜙(𝑥, 𝑦) B 𝜙(𝑥) − 𝜙(𝑦) − ⟨∇𝜙(𝑦), 𝑥 − 𝑦⟩.

The Bregman divergence of the Shannon entropy is given by the Kullback–Leibler divergence
or shortly KL-divergence that we denote by

𝐷𝐾𝐿(𝜇, 𝜈) =
∑
𝑥∈𝒳

𝜇𝑥 log

(
𝜇𝑥
𝜈𝑥

)
for 𝜇, 𝜈 ∈ Δ𝒳 ,

which is well defined whenever supp(𝜈) ⊆ supp(𝜇).
Given two smooth manifoldsℳ and𝒩 and a smooth function 𝑓 : ℳ →𝒩 , we denote

the differential of 𝑓 at 𝑝 ∈ ℳ by 𝑑𝑓𝑝 : 𝑇𝑝ℳ → 𝑇𝑓 (𝑝)𝒩 . We denote the gradient of a smooth

function 𝑓 : ℳ → R defined on a Riemannian manifold (ℳ , 𝑔) by ∇𝑔 𝑓 : ℳ → 𝑇ℳ
and denote the values of the vector field by ∇𝑔 𝑓 (𝑝) ∈ 𝑇𝑝ℳ for 𝑝 ∈ ℳ. When the

Riemannian metric is unambiguous we drop the superscript. In the Euclidean case, we

write 𝐷 𝑓 (𝑝) for the Jacobian matrix with entries 𝐷 𝑓 (𝑝)𝑖 𝑗 = 𝜕𝑗 𝑓𝑖(𝑝). For a univariate

differentiable function we write 𝐷2 𝑓 (𝑝) or ∇2 𝑓 (𝑝) for the Hessian matrix with entries

𝐷 𝑓 (𝑝)𝑖 𝑗 = ∇2 𝑓 (𝑝)𝑖 𝑗 = 𝜕𝑖𝜕𝑗 𝑓 (𝑝).
A closed basic semialgebraic set is a set described by finitely many polynomial inequal-

ities lets say 𝑆 = {𝑥 ∈ R𝑛 : 𝑝𝑖(𝑥) ≥ 0 for 𝑖 = 1, . . . , 𝑘} for some polynomials 𝑝𝑖 . We call

𝐹 ⊆ 𝑆 a face or boundary component of 𝑆 if it is of the form 𝐹 = {𝑥 ∈ 𝑆 : 𝑝𝑖(𝑥) = 0 for 𝑖 ∈ 𝐼}
for some index set 𝐼 ⊆ {1, . . . , 𝑘}. We denote the set of faces of 𝑆 by ℱ (𝑆), which is a

partially ordered set (or shortly poset) with the partial order of inclusion. We endow the

poset ℱ (𝑆)with the join and meet operation

𝐹 ∧ 𝐺 B 𝐹 ∩ 𝐺 and 𝐹 ∨ 𝐺 B
⋂

𝐻∈ℱ (𝑆)
𝐹,𝐺⊆𝐻

𝐻.

These turn ℱ (𝑆) into a lattice as the join and meet satisfy the absortion laws 𝐹∨(𝐹∧𝐺) = 𝐹

and 𝐹∧(𝐹∨𝐺) = 𝐹 for all 𝐹, 𝐺 ∈ ℱ . A morphism between two latticesℱ and𝒢 is a mapping

𝜑 : ℱ → 𝒢 that respects the join and the meet, i.e., such that 𝜑(𝐹 ∧ 𝐺) = 𝜑(𝐹) ∧ 𝜑(𝐺)
and 𝜑(𝐹 ∨ 𝐺) = 𝜑(𝐹) ∨ 𝜑(𝐺) for all 𝐹, 𝐺 ∈ ℱ . A lattice isomorphism is a bĳective lattice

morphism where the inverse is also a morphism. We say that two basic semialgebraic

sets with isomorphic face lattice are combinatorially equivalent.
We denote the space of functions on Ω ⊆ R𝑑 that are integrable in 𝑝-th power by 𝐿𝑝(Ω),

where we assume that 𝑝 ∈ [1,∞). Endowed with

∥𝑢∥𝑝
𝐿𝑝(Ω) B

∫
Ω

|𝑢 |𝑝d𝑥

this is a Banach space, i.e., a complete normed space. If 𝑢 is a multivariate function with

values in R𝑚 we interpret |·| as the Euclidean norm. We denote the subspace of 𝐿𝑝(Ω)
9



of functions with weak derivatives up to order 𝑘 in 𝐿𝑝(Ω) by 𝑊 𝑘,𝑝(Ω), which is a Banach

space with the norm

∥𝑢∥𝑝
𝑊 𝑘,𝑝(Ω) B

𝑘∑
𝑙=0

∥𝐷 𝑙𝑢∥𝑝
𝐿𝑝(Ω).

This space is called a Sobolev space and we denote its dual space, i.e., the space consisting of

all bounded and linear functionals on𝑊 𝑘,𝑝(Ω) by𝑊 𝑘,𝑝(Ω)∗. The closure of all compactly

supported smooth functions𝒞∞𝑐 (Ω) in𝑊 𝑘,𝑝(Ω) is denoted by𝑊
𝑘,𝑝

0
(Ω). IfΩ has a Lipschitz

continuous boundary the operator that restricts a Lipschitz continuous function onto the

closure Ω to the boundary admits a linear and bounded extension tr : 𝑊1,𝑝(Ω) → 𝐿𝑝(𝜕Ω),
which we call the trace operator. Its kernel coincides with 𝑊

1,𝑝

0
(Ω). We write ∥𝑢∥𝐿𝑝(𝜕Ω)

whenever we mean ∥tr(𝑢)∥𝐿𝑝(𝜕Ω) and for 𝑝 = 2 we write 𝐻 𝑘
(0)(Ω) instead of𝑊 𝑘,2

(0) (Ω).
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Part I

Geometry of Markov decision processes



CHAPTER 2

Background on Markov decision processes

Markov decision processes (MDPs) constitute an important mathematical framework

for sequential decision making and originated in the late 1950s and early 1960s [46, 45,

142, 55, 54, 56, 93]. We work with the more general concept of partially observable MDPs,

which were introduced by Karl Johan Åström [22] and allows to incorporate uncertainty

about the state of the Markov process. In this chapter we provide a self contained

introduction to the fundamental concepts in the theory of Markov decision processes and

restrict ourselves to time discrete infinite horizon problems with finite state, action and

observation space and to large extend to memoryless stochastic policies. In particular, we

introduce visitation frequencies, which are the central object of interest in this dissertation.

For more comprehensive introduction to the field of Markov decision processes including

a collection of historical references we refer to [298, 235, 236, 116, 135, 136].

We begin by giving the definition of a partially observable Markov decision process.

Definition 2.1 (Partially observable Markov decision process). A partially observable Markov
decision process or shortly POMDP is a tuple (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟), where

• 𝒮 ,𝒪 and𝒜 are finite sets called the state, observation and action space respectively,

• 𝛼 ∈ Δ𝒮×𝒜𝒮 is a Markov kernel, which we call transition mechanism,

• 𝛽 ∈ Δ𝒮𝒪 is a Markov kernel, which we call observation mechanism and

• 𝑟 ∈ R𝒮×𝒜 , which we call instantaneous reward vector.
We call the system fully observable if the supports of {𝛽(·|𝑠)}𝑠∈𝒮 are disjoint subsets of 𝒪,

in which case the POMDP simplifies to an MDP, i.e., a POMDP with 𝒪 = 𝒮 and 𝛽 = id𝒮 .

We denote the cardinatlities of the sets 𝒮, 𝒪 and𝒜 by 𝑛𝒮 , 𝑛𝒪 and 𝑛𝒜 respectively.

Throughout this part of the thesis, we will always assume that (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟)denotes

a POMDP and we will not always repeat this when stating theorems or other results.

Example 2.2 (Crying baby). To illustrate the abstract concept of partially observable

Markov decision processes we consider the problem of optimally feeding a baby based

where we have to base our decision of feeding it or not on whether it is crying. For this we

model the baby to be in either of the two states 𝒮 = {𝑠1 , 𝑠2} = {"hungry", "not hungry"}.
There are two possible observations 𝒪 = {𝑜1 , 𝑜2} = {"crying", "not crying"} and two pos-

sible actions 𝒜 = {𝑎1 , 𝑎2} = {"feed", "don’t feed"}. For the transition of the states of the

baby we make the following assumptions: After being fed, the baby is never hungry, i.e.,

𝛼(𝑠2 |𝑠1 , 𝑎1) = 𝛼(𝑠2 |𝑠2 , 𝑎1) = 1. When hungry and not being fed, the baby remains hungry,

i.e., 𝛼(𝑠1 |𝑠1 , 𝑎2) = 1. When not hungry and not being fed, the baby will be hungry with

probability 10% at the next time step, i.e., 𝛼(𝑠1 |𝑠2 , 𝑎2) = 0.1. See also Figure 2.1 for a

visualization of the transition mechanism. Further, we assume that the baby always cries

when it is hungry, i.e., 𝛽(𝑜1 |𝑠1) = 1, and cries with probability 50% when it is not hungry1,

1Of course this only meant as a didactic example and not an attempt to realistically model a baby.
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𝑠1 𝑠2

𝑎1

𝑎2 , 0.1

𝑎1

𝑎2 , 0.9

𝑎2

Figure 2.1. Transition model for the crying baby example.

i.e., 𝛽(𝑜1 |𝑠2) = 0.5, and hence obtain the following observation kernel

𝛽 =

( 𝑜1 𝑜2

𝑠1 1 0

𝑠2 0.5 0.5

)
∈ Δ𝒮𝒪 .

Finally, for the instantaneous reward we assume that we obtain no reward when we feed

the baby when it is hungry or when we don’t feed it when it is not hungry, we assume

that we obtain a negative reward of −1 when we feed the baby when it is not hungry and

a negative reward of −10 when we don’t feed the baby when it is hungry. Overall, we

obtain the reward vector

𝑟 =

( 𝑎1 𝑎2

𝑠1 0 −10

𝑠2 −1 0

)
∈ R𝒮×𝒜 .

We will revisit this example throughout the thesis.

The goal in Markov decision processes is to optimally control the state 𝑠𝑡 of the system

through suitable actions 𝑎𝑡 . In a partially observable setting only partial information

about the true state 𝑠𝑡 is revealed through the observation 𝑜𝑡 made from 𝑠𝑡 . The rule how

to choose the next action 𝑎𝑡 is usually referred to as a policy or action selection mechanism
and typically denoted by 𝜋. The following classes of policies are common in Markov

decision processes and reinforcement learning.

Memoryless stochastic policies. A memoryless policy, reactive policy or Markov policy
selects the action 𝑎𝑡 at time 𝑡 purely based on the observation of the most recent observation

𝑜𝑡 . In general it can do so in a stochastic way in which case it is modelled by a Markov

kernel 𝜋𝑡 ∈ Δ𝒪𝒜 from the observation space 𝒪 to the action space 𝒜. The sequence

𝜋 = (𝜋0 ,𝜋1 , . . . ) is referred to as the policy. The stochastic process of the states 𝑆0 , 𝑆1 , . . .

arising through actions selected according to a policy 𝜋 satisfy the Markov property

(2.1) P(𝑆𝑡+1 = 𝑠𝑡+1 |𝑆0 = 𝑠0 , . . . , 𝑆𝑡 = 𝑠𝑡) = P(𝑆𝑡+1 = 𝑠𝑡+1 |𝑆𝑡 = 𝑠𝑡)

justifying the term Markov policies. When the action selection 𝜋𝑡 at is independent of 𝑡

we call the policy stationary and associate it with a single Markov kernel 𝜋 ∈ Δ𝒪𝒜 . We refer

to the family Δ𝒪𝒜 of memoryless stochastic policies as the policy polytope. As a product of

simplices it is indeed a polytope, which in a general context is sometimes referred to as

the conditional probability polytope. The optimization of memoryless stochastic stationary

policies in POMDPs is known to be NP-hard in general [286].
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Memory based policies and internal state controller. A more general class of policies

is described by policies with finite memory. Here, the next action 𝑎𝑡 is based on a finite

horizon window

ℎ
(𝑘)
𝑡 = (𝑜𝑙 , , 𝑎𝑙 , 𝑜𝑙+1 , 𝑎𝑙+1 , . . . , 𝑜𝑡) ∈ ℋ (𝑘)𝑡 B (𝒪 × 𝒜)

max(𝑡−𝑘,0) × 𝒪
for some horizon length 𝑘 ∈ N and 𝑙 = max(𝑡 − 𝑘, 0). Mathematically finite memory

policies can be modelled as a sequence 𝜋 = (𝜋0 ,𝜋1 , . . . ) of Markov kernels

𝜋𝑡 ∈ Δ
ℋ (𝑘)𝑡
𝒜 .

Note that the stochastic process of the states 𝑆0 , 𝑆1 , . . . arising from a memory based

policy do not in general satisfy the Markov property (2.1) but rather

P(𝑆𝑡+1 = 𝑠𝑡+1 |𝑆0 = 𝑠0 , . . . , 𝑆𝑡 = 𝑠𝑡) = P(𝑆𝑡+1 = 𝑠𝑡+1 |𝑆max(𝑡−𝑘,0) = 𝑠
max(𝑡−𝑘,0) , . . . , 𝑆𝑡 = 𝑠𝑡)

A class of policies, which allows for more general memories than sliding windows is

given by the family of finite state controllers. Here, the policy or controller is based on

an internal state 𝑖 ∈ ℐ, where ℐ is a finite set. More precisely a policy is a sequence

𝜋 = (𝜋0 ,𝜋1 , . . . ) of Markov kernels 𝜋𝑡 ∈ Δℐ𝒜 . In addition there evolution of the internal

states are described by Markov kernels 𝜓𝑡 ∈ Δ𝒪×ℐℐ where 𝜓(𝑖𝑡+1 |𝑜𝑡+1 , 𝑖𝑡) describes the

probability that the internal state transitions from 𝑖𝑡 to 𝑖𝑡+1 if the observation 𝑜𝑡 is made.

At time 𝑡 = 0 the kernel 𝜓0 only depends on the observation 𝑜0, i.e., 𝜓0 ∈ Δ𝒪ℐ . One can

either fix the internal state transitions or interpret them as flexible and a second search

variable – next to the policy – in the optimization of Markov decision processes. It is easy

to see that the framework incorporates memoryless stochastic policies, where the internal

state 𝑖𝑡 simply agrees with the observation 𝑜𝑡 and also policies with finite memory where

the internal state 𝑖𝑡 agrees with the history ℎ
(𝑘)
𝑡 .

History and belief state policies. In theory one can allow for infinite memory and

consider policies selecting actions based on the full history

ℎ𝑡 = (𝑜0 , 𝑎0 , 𝑜1 , 𝑎1 , . . . , 𝑜𝑡) ∈ ℋ𝑡 B (𝒪 × 𝒜)𝑡 × 𝒪.

Here, a policy corresponds to a sequence 𝜋 = (𝜋0 ,𝜋1 , . . . ), where 𝜋𝑡 ∈ Δℋ𝑡𝒜 .

Instead of working with the full history one often works with the corresponding belief
state MDP (ℬ ,𝒜 , 𝜔, 𝑟 , 𝛾). The state space of this MDP is given by the set ℬ = Δ𝒮
of probability distributions 𝑏 over the state space of the original POMDP, which are

commonly referred to as beliefs. The action space remains the same. In slight abuse of

notation the reward of a belief 𝑏 ∈ Δ𝒮 and an action 𝑎 ∈ 𝒜 is given by

𝑟(𝑏, 𝑠) B
∑
𝑠∈𝒮

𝑏(𝑠)𝑟(𝑠, 𝑎).

The transition of the belief state 𝑏 to a new belief state 𝑏′ under action 𝑎 ∈ 𝒜 is given by

𝑏′ = 𝑏′(𝑏, 𝑎) B
∑
𝑜∈𝒪

𝑏′(𝑠′ |𝑏, 𝑎, 𝑜)
∑
𝑠

𝑏(𝑠)𝛼(𝑠′ |𝑠, 𝑎),

where the belief update when taking action 𝑎 ∈ 𝒜 and observing 𝑜 ∈ 𝒪 afterwards is

given by Bayes rule

𝑏′(𝑠′ |𝑏, 𝑎, 𝑜) ∝
∑
𝑠

𝑏(𝑠)𝛼(𝑠′ |𝑠, 𝑎)𝛽(𝑜 |𝑠′).
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The belief serves as a sufficient statistics [38] and solving the belief state MDP is equivalent

to computing an optimal history dependent policy 𝜋 = (𝜋0 ,𝜋1 , . . . ), which is known to

be PSPACE-complete for finite horizons [228] and undecidable for infinite horizons [186,

73].

Comparison between the policy classes. It is a classic result that every fully observ-

able MDP admits a deterministic stationary memoryless policy that is optimal under all

(possiblty) history dependent policies [93, 236, 276]. We provide a proof for the reduction

from history based policies to stationary memoryless policies for fully observable prob-

lems in Theorem 3.16 and the existence of deterministic optimal policies in Theorem 2.23.

For partially observable problems memoryless neither of these two results hold. In-

deed, memoryless policies sometimes perform strictly worse compared to history depen-

dent policies and deterministic memoryless policies perform in general worse compared

to memoryless stochastic policies [267]. Although they are more restrictive than policies

with memory, memoryless policies are attractive as they are easier to optimize and are ver-

satile enough for certain applications [278, 182, 299, 157]. Further, finite memory policies

and finite state controllers with fixed internal state transition can be cast as memoryless

policies by augmenting the state space with the space of histories of length 𝑘 or the space

of internal states respectively [179, 231, 145]. The mathematical equivalence of finite state

controllers and memoryless policies – with different underlying POMDPs – motivates us

to restrict our analysis to memoryless stochastic policies.

State-action Markov process. Let us now introduce the Markov processes induced by

the policies of a POMDP. A policy 𝜋 ∈ Δ𝒪𝒜 gives rise to transition kernels 𝑃𝜋 ∈ Δ𝒮×𝒜𝒮×𝒜 and

𝑝𝜋 ∈ Δ𝒮𝒮 by

(2.2) 𝑃𝜋(𝑠′, 𝑎′ |𝑠, 𝑎) B 𝛼(𝑠′ |𝑠, 𝑎)(𝜋 ◦ 𝛽)(𝑎′ |𝑠′)

and

(2.3) 𝑝𝜋(𝑠′ |𝑠) B
∑
𝑎∈𝒜
(𝜋 ◦ 𝛽)(𝑎 |𝑠)𝛼(𝑠′ |𝑠, 𝑎)

Definition 2.3 (State-action Markov process). For any initial state distribution 𝜇 ∈ Δ𝒮 , a

policy𝜋 ∈ Δ𝒮𝒜 defines a Markov process on𝒮×𝒜with transition kernel 𝑃𝜋 and we induce

the associated probability measure on (𝒮 × 𝒜)N by P𝜋,𝜇, P𝜋(·|𝑆0 ∼ 𝜇) or P𝜋(·|𝑆0 ∼ 𝑠0) if

𝜇 = 𝛿𝑠0
. In general, for any policy 𝜋, which is not necessarily memoryless or stationary

we denote the resulting stochastic process on 𝒮 × 𝒜 by P𝜋,𝜇. Note that this process is in

general not Markovian.

Notation for MDPs. With 𝜇 ∈ Δ𝒮 we denote the initial state distribution. Following a

policy 𝜋 yields a series of states and actions, which we denote by 𝑠0 , 𝑎0 , 𝑠1 , . . . . In contrast

to the specific states and actions visited in one trajectory we denote the random variables

at the different times by 𝑆0 , 𝐴0 , 𝑆1 , . . . . We denote the expectation with respect to the

probability measure P𝜋,𝜇 on (𝒮 × 𝒜)N by E𝜋,𝜇 or E𝜋[·|𝑆0 ∼ 𝜇] or E𝜋[·|𝑆0 = 𝑠] when the

initial distribution is the Dirac𝜇 = 𝛿𝑠 concentrated at 𝑠 ∈ 𝒮. Further, when considering the

expectation of the Markov process with transition kernel 𝑃𝜋 with an initial distribution

over states and actions 𝜈 ∈ Δ𝒮×𝒜 we denote the expectation by E𝜋[·|(𝑆0 , 𝐴0) ∼ 𝜈] and

P𝜋(·|(𝑆0 , 𝐴0) ∼ 𝜈) for the corresponding measure on (𝒮 × 𝒜)N. If the initial distribution
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is deterministic, i.e., 𝜈 = 𝛿(𝑠,𝑎), then we write E𝜋[·|𝑆0 = 𝑠, 𝐴0 = 𝑎] and P𝜋(·|𝑆0 = 𝑎, 𝐴0 = 𝑎)
for the associated measure on (𝒮 × 𝒜)N. For POMDPs we sometimes denote state based

policies by 𝜏 ∈ Δ𝒮𝒜 to distinguish them from observation based policies 𝜋 ∈ Δ𝒪𝒜 .

The reward function. Every policy leads to a stochastic process over states and actions

and we require a criterion scoring these processes and thus providing an objective for

policy optimization. Here, we work with the infinite horizon accumulated reward.

Definition 2.4 (Infinite horizon reward). Consider a discount factor 𝛾 ∈ [0, 1]. We define

𝑅(𝜋) = 𝑅
𝜇
𝛾(𝜋) B


(1 − 𝛾) · E𝜋,𝜇

[ ∞∑
𝑡=0

𝛾𝑡𝑟(𝑆𝑡 , 𝐴𝑡)
]

if 𝛾 ∈ [0, 1)

E𝜋,𝜇

[
lim

𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝑟(𝑆𝑡 , 𝐴𝑡)
]

if 𝛾 = 1,

called the (infinite horizon) expected discounted reward for 𝛾 ∈ [0, 1) and the (infinite horizon)
expected mean reward for 𝛾 = 1. Further, the case 𝛾 = 0 is sometimes referred to as the

bandit case and the expected reward is also called the return in the literature [276].

Although not changing the resulting optimization problem we choose to work the fac-

tor (1 − 𝛾) for the discounted reward, which is not commonly done in the literature. The

reason for this is that the factor normalizes the weights

∑∞
𝑡=0

𝛾𝑡 = (1 − 𝛾)−1
and thus the

discounted reward can be interpreted as a weighted average of the rewards of the individ-

ual time steps. This allows us to develop a common frame work for discounted and mean

reward optimization in state-action space later on. Another effect of working with the

normalized discounted reward is that we have 𝑅𝛾 → 𝑅1 for 𝛾 → 1, see Proposition 2.13.

We only use the sub- and superscripts when we want to highlight the dependence on the

discount factor and initial distribution. The expected and mean reward exist without any

assumptions and are continuous with respect to 𝛾 as we show in Proposition 2.13.

The reward optimization problem (ROP). In Markov decision processes it is the goal

to maximize the reward over all policies. In our case, we study the optimization problem

(ROP) maximize𝑅(𝜋) subject to 𝜋 ∈ Δ𝒪𝒜

of maximizing the infinite horizon reward over all memoryless stochastic policies.

Example 2.5 (Crying baby example continued). In order to illustrate the concept of the

infinite horizon reward we compute the reward for the deterministic policies in the crying

baby Example 2.2. For this we fix an initial distribution 𝜇 ∈ Δ𝒮 and a discount factor

𝛾 ∈ [0, 1) where the computations for 𝛾 = 1 can be carried out analogously. With two

observations and two actions there are four deterministic policies corresponding to the

four vertices of the policy polytope Δ𝒪𝒜 � [0, 1]
2
. We begin by computing the reward of

the policy 𝜋1, where we choose to always feed the baby no matter whether it is crying

or not. If the baby is hungry at the beginning, which happens with probability 𝜇𝑠1
then

a reward of 0 is obtained at time 0. After this the baby is never hungry but always fed

and hence we obtain a reward of −1 at every future time. If the baby is not hungry at the

beginning, which happens with probability 𝜇𝑠2
then we obtain a reward of −1 at every

16



time step. Hence, the reward is given by

𝑅(𝜋1) = −𝜇𝑠1
(1 − 𝛾)

∞∑
𝑡=1

𝛾𝑡 − 𝜇𝑠2
(1 − 𝛾)

∞∑
𝑡=0

𝛾𝑡 = −𝛾𝜇𝑠1
− 𝜇𝑠2

.

Let us now consider the policy 𝜋2 of never feeding the baby. When the baby is hungry at

time 𝑡 = 0 it stays hungry and we collect a reward of −10 at every time step and hence a

reward of −10 · (1−𝛾)∑∞𝑡=0
𝛾𝑡 = −10. If the baby is not hungry at time 𝑡 = 0 and is hungry

for the first time at time 𝑡 > 0 then we collect a reward of −10 · 𝛾𝑡 , which happens with

probability 0.1 · 0.9𝑡−1
. Hence, when the baby is not hungry at time 𝑡 = 0 we collect an

overall reward of

∑∞
𝑡=0
(−10) · 𝛾𝑡 · 0.1 · 0.9𝑡−1 = − 𝛾

1−0.9𝛾 . Overall, for an initial distribution

𝜇 ∈ Δ𝒮 we obtain an overall reward of

𝑅(𝜋2) = −10𝜇𝑠1
− 𝛾𝜇𝑠2

1 − 0.9𝛾
.

Let us now consider the deterministic policy 𝜋3, which is the most intuitive one of feeding

the baby when it is crying and not feeding it when it is not crying. When the baby is

hungry at the beginning it will cry and we will feed it and obtain a reward of 0. After one

time step the baby will not be hungry and hence from the on we receive the same reward

– but discounted with a factor of 𝛾 – as in the case where the baby was not hungry in the

first place. When the baby is not hungry at the beginning there is a 50% chance that it will

cry and we feed it in which case we receive a reward of −1, which we normalize by 1− 𝛾,

and the baby will remain not hungry and hence after time 0 we obtain the same reward

but discounted with 𝛾. When the baby is not crying we don’t feed it in which case we

receive a reward of 0 and the baby will be not hungry with probability 90% and hungry

with probability 10% at the next time step. When we denote the reward obtained when

the baby is hungry at 𝑡 = 0 by 𝑉𝑠1
and the reward obtained when the baby is not hungry

by 𝑉𝑠2
our considerations lead to the following system of linear equations:

𝑉𝑠1
= 𝛾𝑉𝑠2

𝑉𝑠2
= 0.5(−(1 − 𝛾) + 𝛾𝑉𝑠2

) + 0.5(0.9𝛾𝑉𝑠2
+ 0.1𝛾𝑉𝑠1

).(2.4)

The unique solution to this system is given by

𝑉𝑠2
=

−0.5(1 − 𝛾)
1 − 0.95𝛾 − 05𝛾2

= − 10

𝛾 + 20

and 𝑉𝑠1
= − 10𝛾

𝛾 + 20

.

Overall, we obtain the reward according to

𝑅(𝜋3) = 𝜇𝑠1
𝑉𝑠1
+ 𝜇𝑠2

𝑉𝑠2
= −10(𝛾𝜇𝑠1

+ 𝜇𝑠2
)

𝛾 + 20

.

For the fourth deterministic policy 𝜋4 where we feed the baby when it is not crying and

don’t feed it when it is crying we can compute the reward in similar fashion and obtain a

reward of

𝑅(𝜋4) = −10𝜇𝑠1
− 10𝜇𝑠2

20 − 19𝛾
.

We have seen that it is convenient to consider the reward obtained when starting in a

given state. This leads us to the important concept of value functions where the recurrence

relationship (2.4) is formalized in the Bellman equations, see Theorem 2.9. Further, we

see in this example that the reward function is a rational function of the discounted factor.
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In Section 2.3 we obtain a general expression of the infinite horizon discounted reward as

a rational function of the entries of the policy as well as the discounted factor and 𝜇, 𝛽, 𝛼.

Finally, we note that our expressions extend to the mean reward case 𝛾 = 1 in which case

we obtain 𝑅(𝜋1) = −1, 𝑅(𝜋2) = 𝑅(𝜋4) = −10 and 𝑅(𝜋3) = − 10

21
. Where with policy 𝜋1

we end up feeding the baby all the time and with policies 𝜋2 and 𝜋4 we end up never

feeding the hungry baby, with the policy 𝜋3 we adapt our choice in a meaningful way

to the crying of the baby. We will see later however, that we can obtain a higher reward

deciding randomly whether to feed the baby when we hear it crying, see Example 2.32.

Value functions and Bellman’s equation. Value functions encode the reward that is

obtained when starting in a given state. They play an important role for the design of

various solution algorithms for Markov decision and their theoretical analysis. In order

to keep our introduction to Markov decision processes short we restrict our attention in

this chapter to discounted value functions and refer [187] for the suitable generalizations

for the mean reward case.

Definition 2.6 (Value function). For a policy 𝜋 ∈ Δ𝒪𝒜 and 𝛾 ∈ [0, 1) we define the (state)
value function 𝑉𝜋 = 𝑉𝜋

𝛾 ∈ R𝒮 via

(2.5) 𝑉𝜋(𝑠) B 𝑅
𝛿𝑠
𝛾 (𝜋) = (1 − 𝛾) · E𝜋

[ ∞∑
𝑡=0

𝛾𝑡𝑟(𝑆𝑡 , 𝐴𝑡)|𝑆0 = 𝑠

]
for 𝑠 ∈ 𝒮.

Note that 𝑅(𝜋) = ∑
𝑠∈𝒮 𝜇(𝑠)𝑉𝜋(𝑠) = ⟨𝜇, 𝑉𝜋⟩𝒮 for any policy 𝜋 ∈ Δ𝒪𝒜 .

Definition 2.7 (State-action value function). For a policy 𝜋 ∈ Δ𝒪𝒜 and 𝛾 ∈ [0, 1) we define

the state-action value function or Q-value function 𝑄𝜋 = 𝑄𝜋
𝛾 ∈ R𝒮∈𝒜 via

(2.6) 𝑄𝜋(𝑠, 𝑎) B (1 − 𝛾) · E𝜋

[ ∞∑
𝑡=0

𝛾𝑡𝑟(𝑆𝑡 , 𝐴𝑡)|𝑆0 = 𝑠, 𝐴0 = 𝑎

]
for 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜.

The state and state-action value functions are closely related by the following two

formulas, which are elementary to verify

𝑉𝜋(𝑠) =
∑
𝑎∈𝒜
(𝜋 ◦ 𝛽)(𝑎 |𝑠)𝑄𝜋(𝑠, 𝑎) and(2.7)

𝑄𝜋(𝑠, 𝑎) = (1 − 𝛾)𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)𝑉𝜋(𝑠′).(2.8)

Further, for both value functions determine the reward in the following way

𝑅(𝜋) =
∑
𝑠∈𝒮

𝜇(𝑠)𝑉𝜋(𝑠) =
∑

𝑠∈𝒮 ,𝑎∈𝒜
𝜇(𝑠)(𝜋 ◦ 𝛽)(𝑎 |𝑠)𝑄𝜋(𝑠, 𝑎),(2.9)

where we again leave the proof to the reader.

Definition 2.8 (One step reward). For 𝜋 ∈ Δ𝒪𝒜 we define the one step reward 𝑟𝜋 ∈ R𝒮 as

𝑟𝜋(𝑠) B
∑
𝑎∈𝒜

𝑟(𝑠, 𝑎)(𝜋 ◦ 𝛽)(𝑎 |𝑠).

The classic algorithm of value iteration and also Q-learning are based on the following

characterization of the value functions as fixed points of contracting operators.
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Theorem 2.9 (Bellman equation). For 𝛾 ∈ [0, 1) the value functions are uniquely determined
by the Bellman equations

𝑉𝜋 = 𝛾𝑝𝜋𝑉
𝜋 + (1 − 𝛾)𝑟𝜋 and(2.10)

𝑄𝜋 = 𝛾𝑃𝜋𝑄
𝜋 + (1 − 𝛾)𝑟.(2.11)

Proof. Using the dominated convergence theorem and the Neumann series we compute

𝑄𝜋(𝑠, 𝑎) = (1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡
∑

𝑠′∈𝒮 ,𝑎′∈𝒜
P𝜋(𝑆𝑡 = 𝑠′, 𝐴𝑡 = 𝑎′ |𝑆0 = 𝑠, 𝐴0 = 𝑎)𝑟(𝑠′, 𝑎′)

= (1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡𝑃𝑡𝜋𝑟 = (1 − 𝛾)(𝐼 − 𝛾𝑃𝜋)−1𝑟.

Multiplication with (𝐼 − 𝛾𝑃𝜋) and rearranging yields the Bellman equation for 𝑄𝜋
. Note

that (2.11) uniquely determines 𝑄𝜋
as 𝐼 − 𝛾𝑃𝜋 is invertible.

For the state value function (2.10) can be shown with an analogue computation or

deduced from (2.11) using the relation (2.7). □

The Bellman equations characterize the value functions as the solutions of a system of

linear equations. Since the solution of such a system is a rational operation by Cramer’s

rule we obtain the following result expressing the reward function as a rational function.

Proposition 2.10 (Reward as a rational function). Consider 𝛾 ∈ [0, 1). It holds that

(2.12) 𝑅
𝜇
𝛾(𝜋) = (1 − 𝛾) · det(𝐼 − 𝛾𝑝𝜋 + 𝑟𝜋𝜇⊤)

det(𝐼 − 𝛾𝑝𝜋)
− 1 + 𝛾.

In particular, the entries of the value function are given by

(2.13) 𝑉𝜋(𝑠) = (1 − 𝛾) · det(𝐼 − 𝛾𝑝𝜋)𝛿𝑠𝑠
det(𝐼 − 𝛾𝑝𝜋)

= (1 − 𝛾) · det(𝐼 − 𝛾𝑝𝜋 + 𝑟𝜋𝛿⊤𝑠 )
det(𝐼 − 𝛾𝑝𝜋)

− 1 + 𝛾,

where (𝐼 − 𝛾𝑝𝜋)𝛿𝑠𝑠 denotes the matrix that is obtained by replacing the 𝑠-th column of 𝐼 − 𝛾𝑝𝜋 with
the unit vector 𝛿𝑠 ∈ R𝒮 .
Proof. By the matrix determinant lemma [99, Lemma 1.1] it holds for an invertible matrix

𝐴 ∈ R𝑑×𝑑 and vectors 𝑣, 𝑤 ∈ R𝑑 that det(𝐴+𝑢𝑣⊤) = (1+ 𝑣⊤𝐴−1𝑢)det(𝐴). Applying this to

the reward function 𝑅
𝜇
𝛾(𝜋) = 𝜇⊤𝑉𝜋 = 𝜇⊤(1− 𝛾)(𝐼 − 𝛾𝑝𝜋)−1𝑟𝜋 yields (2.12). The expression

for the value function follows from Cramer’s rule and by setting 𝜇 = 𝛿𝑠 respectively. □

2.1 State-action frequencies

The reward arising from a policy is determined by the time the Markov process spends

at the individual states while selection specific actions. Hence, instead of optimizing the

policy directly one could try to optimize the time spent at favorable states doing favorable

actions. The time spent at these are encoded by the so called state-action frequencies,

which turn out to be generalizations of stationary distribution incorporating the discount

factor. They have appeared in linear programming formulations of Markov decision

processes [189, 86, 80, 139] and have been studied systematically under this name by

Cyrus Derman [93] who showed that they form a polytope. Apart from their use in
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linear programming approaches these frequencies appear naturally in the analysis of

other solution algorithms like policy gradient methods [2].

By the dominated convergence theorem the discounted reward satisfies

𝑅(𝜋) = (1 − 𝛾) · E𝜋,𝜇

[ ∞∑
𝑡=0

𝛾𝑡𝑟(𝑆𝑡 , 𝐴𝑡)
]
= (1 − 𝛾)

∞∑
𝑡=0

E𝜋,𝜇 [𝑟(𝑆𝑡 , 𝐴𝑡)]

= (1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡
∑

𝑠∈𝒮 ,𝑎∈𝒜
P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)𝑟(𝑠, 𝑎).

(2.14)

Hence, the reward is determined by weighted averages of the visitation probabilities

P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) of the state-action Markov process at time 𝑡 ∈ N. This motivates the

definition of the state-action frequencies, which can be interpreted as a measure of how

much time the state-action process spends at the different states and actions.

Definition 2.11 (State-action frequencies). For a policy 𝜋 we define the (discounted) state-
action frequency or (discounted) state-action distribution 𝜂𝜋 ∈ Δ𝒮×𝒜 by

(2.15) 𝜂𝜋(𝑠, 𝑎) = 𝜂𝜋𝛾(𝑠, 𝑎) B


(1 − 𝛾)

∞∑
𝑡=0

𝛾𝑡P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) if 𝛾 ∈ [0, 1)

lim

𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) if 𝛾 = 1.

We denote the set of all state-action frequencies in the fully and in the partially observable

cases by

𝒩 B
{
𝜂𝜋 : 𝜋 ∈ Δ𝒮𝒜

}
⊆ Δ𝒮×𝒜 and 𝒩𝛽 B

{
𝜂𝜋 : 𝜋 ∈ Δ𝒪𝒜

}
⊆ 𝒩 ⊆ Δ𝒮×𝒜 .

The name state-action frequency dates back to the seminal work [93]; other common

names of state action frequencies include (discounted) visitation/occupancy measure, or on-
policy distribution [276].

The reward optimization problem in state-action space. An analogue computation

to (2.14) holds for the mean reward case and hence

(2.16) 𝑅(𝜋) = ⟨𝑟, 𝜂𝜋⟩𝒮×𝒜 for all 𝜋 ∈ Δ𝒪𝒜 .

Hence, the reward optimization problem (ROP) has the same optimal value as the reward
optimization problem in state-action space

(ROP-SA) maximize ⟨𝑟, 𝜂⟩𝒮×𝒜 subject to 𝜂 ∈ 𝒩𝛽 .

Indeed, we see later that these two problems are equivalent in the sense that a solution

𝜋∗ of (ROP) can efficiently be computed from an optimizer 𝜂∗ of (ROP-SA) through condi-

tioning, see Lemma 3.2. Note that these two optimization problems are rather different,

where (ROP) is a linearly constrained problem with non-linear objective and (ROP-SA) is

a linear objective problem with a possibly non-linear constraint set. The complexity of

the problem lies in the feasible region𝒩𝛽
and Chapter 3 studies to the geometry of𝒩𝛽

.
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Analogously to state-action frequencies we can introduce state frequencies, which

play an important role as they appear in the iteration complexity of gradient based

methods for reward optimization. Further, they appear naturally when computing a

policy corresponding to a state-action distribution.

Definition 2.12 (State frequencies). For a policy 𝜋 we define the (discounted) state frequency
or (discounted) state distribution 𝜌𝜋 ∈ Δ𝒮 by

(2.17) 𝜌𝜋(𝑠) = 𝜌𝜋𝛾(𝑠) B


(1 − 𝛾)

∞∑
𝑡=0

𝛾𝑡P𝜋,𝜇(𝑆𝑡 = 𝑠) if 𝛾 ∈ [0, 1)

lim

𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

P𝜋,𝜇(𝑆𝑡 = 𝑠) if 𝛾 = 1.

It is elementary to check that 𝜌𝜋(𝑠) = ∑
𝑎∈𝒜 𝜂𝜋(𝑠, 𝑎), i.e., that 𝜌𝜋 is the state-marginal

of the joint probability disitrbution 𝜂𝜋.

Existence and continuity of reward and frequencies. Before we continue we convince

ourselves that the discounted frequencies always exist even without requiring the ergod-

icity of the system. In particular this implies the well-definedness of the infinite horizon

reward function. For this we follow the reasoning in [142]. In order to show that the

expected state-action frequencies exist without any assumptions, we recall that for a (row

or column) stochastic matrix 𝑃, the Cesàro mean is defined by

𝑃∗ B lim

𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

𝑃𝑡

and exists without any assumptions. Further, 𝑃∗ is the projection onto the subspace of

stationary distribution [103]. For 𝛾 ∈ [0, 1) the matrix

𝑃∗𝛾 B (1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡𝑃𝑡 = (1 − 𝛾)(𝐼 − 𝛾𝑃)−1

is known as the Abel mean of 𝑃, where we used the Neumann series. By the Tauberian

theorem, it holds that 𝑃∗𝛾 → 𝑃∗ for 𝛾↗ 1, see for example [120, 144].

Proposition 2.13. The frequencies 𝜂𝜋𝛾 , 𝜌
𝜋
𝛾 and the reward 𝑅𝛾(𝜋) exist for every 𝜋 ∈ Δ𝒪𝒜 and

𝜇 ∈ Δ𝒮 and are continuous in 𝛾 ∈ [0, 1] for fixed 𝜋 and 𝜇.

Proof. The existence of the state-action frequencies as well as the continuity with respect

to the discount parameter follows directly from the general theory since

𝜂𝜋𝛾 = (𝑃𝑇𝜋 )∗𝛾(𝜇 ∗ (𝜋 ◦ 𝛽))

for 𝛾 ∈ [0, 1) and 𝜂𝜋
1
= (𝑃𝑇𝜋 )∗(𝜇 ∗ (𝜋 ◦ 𝛽)). With an analogue argument, the statement

follows for the state frequencies and for the reward. □

For 𝛾 = 1 we work under the following standard assumption in the (PO)MDP literature.

Assumption 2.14 (Uniqueness of stationary distributions). If 𝛾 = 1, we assume that for

any policy 𝜋 ∈ Δ𝒪𝒜 there exists a unique stationary distribution 𝜂 ∈ Δ𝒮×𝒜 of 𝑃𝜋.
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Note that this assumption is weaker than ergodicity and is satisfied whenever the

Markov chain with transition kernel 𝑃𝜋
is irreducible and aperiodic for every policy 𝜋,

e.g., when the transition kernel satisfies 𝛼 > 0. The following theorem shows in particular

that for any initial distribution 𝜇, the infinite time horizon state-action frequency 𝜂
𝜋,𝜇
1

is

the unique stationary distribution of 𝑃𝜋. For 𝛾 ∈ [0, 1) the ergodicity Assumption 2.14 is

not required, since the discounted stationary distributions are always unique since 𝐼−𝛾𝑃𝜋
is invertible because the spectral norm of 𝑃𝜋 is one. The result can be interpreted as a

characterization similar to the Bellman equation for the value functions.

Theorem 2.15 (Characterization via discounted stationarity). Fix 𝛾 ∈ [0, 1] and 𝜋 ∈ Δ𝒪𝒜 .
Then the state and state-action frequency 𝜌𝜋 ∈ Δ𝒮 and 𝜂𝜋 ∈ Δ𝒮×𝒜 satisfy

𝜌𝜋 = 𝛾𝑝𝑇𝜋𝜌
𝜋 + (1 − 𝛾)𝜇 and(2.18)

𝜂𝜋 = 𝛾𝑃𝑇𝜋𝜂
𝜋 + (1 − 𝛾)(𝜇 ∗ (𝜋 ◦ 𝛽)).(2.19)

Further, let Assumption 2.14 hold then 𝜌𝜋 and 𝜂𝜋 are the unique elements in Δ𝒮 and Δ𝒮×𝒜
satisfying (2.18) and (2.19) respectively.

Proof. By the general theory of Cesàro means, (𝑃𝑇𝜋 )∗ projects onto the space of stationary

distributions and hence the 𝜂𝜋 = (𝑃𝑇𝜋 )∗(𝜇 ∗ (𝜋 ◦ 𝛽)) is stationary; this can also be verified

through explicit computation. Hence, by Assumption 2.14, 𝜂𝜋
1

is the unique stationary

distribution. For 𝛾 ∈ [0, 1)we have

𝜂𝜋𝛾 = (𝑃𝑇𝜋 )∗𝛾(𝜇 ∗ (𝜋 ◦ 𝛽)) = (𝐼 − 𝛾𝑃𝑇𝜋 )−1(𝜇 ∗ (𝜋 ◦ 𝛽)),

which yields the claim. For the state distributions 𝜌
𝜋,𝜇
𝛾 the claim follows analogously or

by marginalization. □

Properties of frequencies. Since P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎) = P𝜋,𝜇(𝑆𝑡 = 𝑠)(𝜋 ◦ 𝛽)(𝑎 |𝑠) it holds

that𝜂𝜋(𝑠, 𝑎) = (𝜋◦𝛽)(𝑎 |𝑠)𝜌𝜋(𝑠) for all policies𝜋 and 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜. Our main motivation for

studying state-action frequencies was the identity 𝑅(𝜋) = ⟨𝑟, 𝜂𝜋⟩𝒮×𝒜 , which also implies

the identity

(2.20) 𝑅(𝜋) = ⟨𝑟, 𝜂𝜋⟩𝒮×𝒜
∑
𝑠∈𝒮

𝜌𝜋(𝑠)
∑
𝑎∈𝒜
(𝜋 ◦ 𝛽)(𝑎 |𝑠)𝑟(𝑠, 𝑎) = ⟨𝑟𝜋 , 𝜌𝜋⟩𝒮 .

Where the frequencies can be used to compute the reward of a policy we can also inter-

pret frequencies as rewards allowing us to transfer many statements for infinite horizon

rewards to frequencies. Indeed, if we choose 𝑟(𝑠′, 𝑎′) B 𝛿𝑠𝑠′𝛿𝑎𝑎′ then 𝑅(𝜋) = 𝜂𝜋(𝑠, 𝑎) and

similarly if 𝑟(𝑠′, 𝑎′) B 𝛿𝑠𝑠′ then 𝑅(𝜋) = 𝜌𝜋(𝑠). With this interpretation Proposition 2.10

implies

(2.21) 𝜂𝜋(𝑠, 𝑎) = (1 − 𝛾) · det(𝐼 − 𝛾𝑝𝜋 + (𝜋 ◦ 𝛽)(𝑎 |𝑠)𝛿𝑠𝜇⊤)
det(𝐼 − 𝛾𝑝𝜋)

− 1 + 𝛾

and

(2.22) 𝜌𝜋(𝑠) = (1 − 𝛾) · det(𝐼 − 𝛾𝑝𝜋 + 𝛿𝑠𝜇⊤)
det(𝐼 − 𝛾𝑝𝜋)

− 1 + 𝛾.

In addition, the following consequences of Cramer’s rule are useful.
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Proposition 2.16. Consider 𝛾 ∈ [0, 1) and consider 𝜋 ∈ Δ𝒪𝒜 . It holds that

(2.23) 𝜂
𝜋,𝜇
𝛾 (𝑠, 𝑎) = (1 − 𝛾) ·

(𝜋 ◦ 𝛽)(𝑎 |𝑠)det(𝐼 − 𝛾𝑝𝑇𝜋)
𝜇
𝑠

det(𝐼 − 𝛾𝑝𝜋)

and

(2.24) 𝜌
𝜋,𝜇
𝛾 (𝑠) = (1 − 𝛾) ·

det(𝐼 − 𝛾𝑝𝑇𝜋)
𝜇
𝑠

det(𝐼 − 𝛾𝑝𝜋)
.

where (𝐼 − 𝛾𝑝𝜋)𝜇𝑠 denotes the matrix that is obtained by replacing the 𝑠-th column of 𝐼 − 𝛾𝑝𝜋 with
the initial distribution 𝜇 ∈ R𝒮 .

Proof. Applying Cramer’s rule to 𝜌𝜋 = (1− 𝛾)(𝐼 − 𝛾𝑝𝑇𝜋)−1𝜇 and 𝜂𝜋(𝑠, 𝑎) = (𝜋 ◦ 𝛽)(𝑎 |𝑠)𝜌𝜋(𝑠)
yields the result. □

2.2 The advantage function and Bellman optimality

Here, we review the fundamental principle of Bellman optimality for fully observable

MDPs. This implies the existence of deterministic optimal policies and lies at the heart of

the two classic algorithms of value and policy iteration. Further, the advantage function

and the performance difference lemma are powerful tools in Markov decision processes.

Definition 2.17 (Advantage function). For a policy𝜋 ∈ Δ𝒪𝒜 we define the advantage function
as 𝐴𝜋(𝑠, 𝑎) B 𝑄𝜋(𝑠, 𝑎) −𝑉𝜋(𝑠) for 𝑠 ∈ 𝒮 and 𝑎 ∈ 𝒜.

The value 𝐴𝜋(𝑠, 𝑎) of the advantage function encodes how much better it is to fix the

first action to be 𝑎 when starting in state 𝑠 compared to choosing it according to 𝜋 given

that all future actions will be selected according to 𝜋. The concept and name advantage

function dates back to [30]2 and yields an elegant expression of the difference of the

reward of two policies in terms of a state-action frequency and an advantage function.

Lemma 2.18 (Performance difference, [152]). Let 𝛾 ∈ [0, 1) and consider 𝜋,𝜋′ ∈ Δ𝒪𝒜 . It holds
that

𝑅(𝜋) − 𝑅(𝜋′) =
⟨𝜂𝜋 , 𝐴𝜋′⟩𝒮×𝒜

1 − 𝛾
.

Proof. We compute

⟨𝜂𝜋 , 𝐴𝜋′⟩𝒮×𝒜 = ⟨𝜂𝜋 , 𝑄𝜋′⟩𝒮×𝒜 − ⟨𝜂𝜋 , 𝑉𝜋′⟩𝒮×𝒜 .

The second term equals

⟨𝜂𝜋 , 𝑉𝜋′⟩𝒮×𝒜 =
∑
𝑠,𝑎

𝜌𝜋(𝑠)𝜋(𝑎 |𝑠)𝑉𝜋′(𝑠) = ⟨𝜌𝜋 , 𝑉𝜋′⟩𝒮 .

2Here, an advantage function 𝐴∗ assuming optimal actions after the first action was considered.
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Using (2.8) and the discounted stationarity (2.18) the first term equals∑
𝑠∈𝒮 ,𝑎∈𝒜

𝜂𝜋(𝑠, 𝑎)𝑄𝜋′(𝑠, 𝑎) =
∑

𝑠∈𝒮 ,𝑎∈𝒜
𝜂𝜋(𝑠, 𝑎)

(
(1 − 𝛾)𝑟(𝑠, 𝑎) + 𝛾

∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)𝑉𝜋′(𝑠′)
)

= (1 − 𝛾)𝑅(𝜋) + 𝛾
∑
𝑠′∈𝒮

𝑉𝜋′(𝑠′)
∑

𝑠∈𝒮 ,𝑎∈𝒜
𝜌𝜋(𝑠)𝜋(𝑎 |𝑠)𝛼(𝑠′ |𝑠, 𝑎)

= (1 − 𝛾)𝑅(𝜋) + ⟨𝛾𝑝𝑇𝜋𝜌𝜋 , 𝑉𝜋′⟩𝒮
= (1 − 𝛾)𝑅(𝜋) + ⟨𝜌𝜋 , 𝑉𝜋′⟩𝒮 − (1 − 𝛾)⟨𝜇, 𝑉𝜋′⟩𝒮
= (1 − 𝛾)𝑅(𝜋) + ⟨𝜌𝜋 , 𝑉𝜋′⟩𝒮 − (1 − 𝛾)𝑅(𝜋′).

Combining the computations we obtain

⟨𝜂𝜋 , 𝐴𝜋′⟩𝒮×𝒜 = (1 − 𝛾)𝑅(𝜋) − (1 − 𝛾)𝑅(𝜋′).

□

Theorem 2.19 (Bellman optimality criterion). Consider a fully observable Markov decision
process (𝒮 ,𝒜 , 𝛼, 𝑟) and a discount factor 𝛾 ∈ [0, 1) and 𝜋 ∈ Δ𝒮𝒜 . Then the following statements
are equivalent:

(i) It holds that 𝑉𝜋 ≥ 𝑉𝜋′ for all 𝜋′ ∈ Δ𝒮𝒜 .
(ii) It holds that 𝑅𝜇

𝛾(𝜋) ≥ 𝑅
𝜇
𝛾(𝜋′) for all 𝜋′ ∈ Δ𝒮𝒜 and 𝜇 ∈ Δ𝒮 .

(iii) For some 𝜇 ∈ int(Δ𝒮) it holds that 𝑅𝜇
𝛾(𝜋) ≥ 𝑅

𝜇
𝛾(𝜋′) for all 𝜋′ ∈ Δ𝒮𝒜 .

(iv) It holds that 𝐴𝜋(𝑠, 𝑎) ≤ 0 for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜.
(v) It holds that

(2.25) 𝑉𝜋(𝑠) = max

𝑎∈𝒜
𝑄𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝒮.

Proof. We first prove that (i) implies (ii). This follows as

𝑅
𝜇
𝛾(𝜋) = 𝜇⊤𝑉𝜋 ≥ 𝜇⊤𝑉𝜋′ = 𝑅

𝜇
𝛾(𝜋′)

for any 𝜋′ ∈ Δ𝒮𝒜 and 𝜇 ∈ Δ𝒮 .

It is clear that (ii) implies (iii).
Now we show that (iii) implies (iv). For this we assume that

0 < 𝐴𝜋(𝑠0 , 𝑎0) = 𝑄𝜋(𝑠0 , 𝑎0) −𝑉𝜋(𝑠0)

for some 𝑠0 ∈ 𝒮 , 𝑎0 ∈ 𝒜. Let 𝜋′ ∈ Δ𝒮𝒜 denote a greedy improvement of 𝜋 ∈ Δ𝒮𝒜 , i.e., let

𝜋′ : 𝒮 → 𝒜 be a deterministic policy satisfying

𝑄𝜋(𝑠,𝜋′(𝑠)) = max

𝑎∈𝒜
𝑄𝜋(𝑠, 𝑎) ≥ 𝑉𝜋(𝑠) for all 𝑠 ∈ 𝒮 ,

which implies 𝐴𝜋(𝑠,𝜋′(𝑠)) ≥ 0. By the performance difference lemma we have

(1 − 𝛾)(𝑅𝜇
𝛾(𝜋′) − 𝑅

𝜇
𝛾(𝜋)) =

∑
𝑠∈𝒮 ,𝑎∈𝒜

𝜌𝜋
′(𝑠)𝜋′(𝑎 |𝑠)𝐴𝜋(𝑠, 𝑎) =

∑
𝑠∈𝒮

𝜌𝜋
′(𝑠)𝐴𝜋(𝑠,𝜋′(𝑠)) > 0

since 𝜌
𝜋′,𝜇
𝛾 (𝑠0) ≥ (1 − 𝛾)𝜇(𝑠0) > 0 and 𝐴𝜋(𝑠0 ,𝜋′(𝑠0)) ≥ 𝐴𝜋(𝑠0 , 𝑎0) > 0.
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Let us now proof the equivalence of (iv) and (v). Let (iv) hold, i.e., 0 ≤ 𝑄𝜋(𝑠, 𝑎) −𝑉𝜋(𝑠)
for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜. Then clearly 𝑉𝜋(𝑠) ≥ max𝑎∈𝒜 𝑄𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝒮. On the other

hand by (2.7) it holds

(2.26) 𝑉𝜋(𝑠) =
∑
𝑎∈𝒜

𝜋(𝑎 |𝑠)𝑄𝜋(𝑠, 𝑎) ≤ max

𝑎∈𝒜
𝑄𝜋(𝑠, 𝑎).

Let now (v) hold, then we have 𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎)−𝑉𝜋(𝑠) ≤ max𝑎∈𝒜 𝑄𝜋(𝑠, 𝑎)−𝑉𝜋(𝑠) = 0

for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜.

It remains to show that (iv) implies (i). For this we assume that 𝐴𝜋(𝑠, 𝑎) ≤ 0 for all

𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜. For 𝜋′ ∈ Δ𝒮𝒜 the performance difference lemma implies that

𝑅(𝜋′) − 𝑅(𝜋) = (1 − 𝛾)−1⟨𝜂𝜋′ , 𝐴𝜋⟩𝒮 ≤ 0

for an arbitrary initial distribution 𝜇 ∈ Δ𝒮 , which shows 𝑉𝜋 ≥ 𝑉𝜋′
. □

Definition 2.20 (Bellman optimality). We call a policy 𝜋∗ ∈ Δ𝒮𝒜 satisfying the equivalent

statements (i)-(v) from Theorem 2.19 a Bellman optimal policy. For any Bellman optimal

policy 𝜋∗ it holds that

𝑉𝜋∗(𝑠) = max

𝜋∈Δ𝒮𝒜
𝑉𝜋(𝑠) and 𝑄𝜋∗(𝑠, 𝑎) = max

𝜋∈Δ𝒮𝒜
𝑄𝜋(𝑠, 𝑎) for 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜

and we write 𝑉∗ and 𝑄∗ for 𝑉𝜋∗
and 𝑄𝜋∗

.

The Bellman optimality criterion states that a policy is optimal if and only if the value

of every state is the best possible value over all actions. This is precisely the case if

(2.27)

∑
𝑎∈𝒜

𝜋(𝑎 |𝑠)𝑄𝜋(𝑠, 𝑎) = max

𝑎′∈𝒜
𝑄𝜋(𝑠, 𝑎′) for all 𝑠 ∈ 𝒮 ,

where we used equation (2.25) using (2.7). Hence, a policy is Bellman optimal if and only

if it selects only actions with positive probability that maximize the 𝑄 value function.

Often, the optimality criterion (2.25) is stated as

(2.28) 𝑉𝜋(𝑠) = max

𝑎∈𝒜
(1 − 𝛾)𝑟(𝑠, 𝑎) + 𝛾

∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)𝑉𝜋(𝑠′) for all 𝑠 ∈ 𝒮 ,

which is due to (2.8). This formulation lies at the core of the value iteration algorithm as

we will see later.

Definition 2.21 (Greedy policies). We call a policy 𝜋 ∈ Δ𝒮𝒜
(i) greedy with respect to 𝑄 ∈ R𝒮×𝒜 if

(2.29)

∑
𝑎∈𝒜

𝜋(𝑎 |𝑠)𝑄(𝑠, 𝑎) = max

𝑎∈𝒜
𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝒮 ,

(ii) greedy with respect to 𝜋′ if it is greedy with respect to 𝑄𝜋′
and

(iii) greedy with respect to 𝑉 ∈ R𝒮 if it is greedy with respect to 𝑄𝑉 ∈ R𝒮×𝒜 defined

by

𝑄𝑉 (𝑠, 𝑎) B (1 − 𝛾)𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)𝑉(𝑠′).

With this terminology Theorem 2.19 states that a policy is Bellman optimal if and

only if it is greedy with respect to itself. The following result implies the existence of

deterministic Bellman optimal policies in and is useful in the analysis of policy iteration.
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Lemma 2.22 (Policy improvement). Let 𝜋′ ∈ Δ𝒮𝒜 be greedy with respect to 𝜋 ∈ Δ𝒮𝒜 . Then it
holds that 𝑅(𝜋′) ≥ 𝑅(𝜋) for all initial distribution 𝜇 ∈ Δ𝒮 . Further, if 𝑅(𝜋′) = 𝑅(𝜋) for some
strictly positive initial distribution 𝜇 ∈ int(Δ𝒮) or equivalently 𝑉𝜋′ = 𝑉𝜋 then 𝜋 (and therefore
𝜋′) is Bellman optimal.

Proof. By the performance difference Lemma 2.18 it holds that

(1 − 𝛾)(𝑅(𝜋′) − 𝑅(𝜋)) =
∑

𝑠∈𝒮 ,𝑎∈𝒜
𝜂𝜋
′(𝑠, 𝑎)𝐴𝜋(𝑠, 𝑎)

=
∑
𝑠∈𝒮

𝜌𝜋
′(𝑠)

(∑
𝑎∈𝒜

𝜋′(𝑎 |𝑠)𝑄𝜋(𝑠, 𝑎) −𝑉𝜋(𝑠)
)

=
∑
𝑠∈𝒮

𝜌𝜋
′(𝑠)

(
max

𝑎∈𝒜
𝑄𝜋(𝑠, 𝑎) −𝑉𝜋(𝑠)

)
≥ 0,

(2.30)

where we used (2.26) in the last step. Assume now that 𝑅(𝜋′) − 𝑅(𝜋) = 0 for some

initial distribution 𝜇 ∈ int(Δ𝒮) then 𝜌𝜋
′(𝑠) ≥ (1 − 𝛾)𝜇(𝑠) > 0. Now (2.30) implies that

𝑉𝜋(𝑠) = max𝑎∈𝒜 𝑄𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝒮 and thus 𝜋 is Bellman optimal. □

Theorem 2.23 (Existence of deterministic optimal policies in MDPs). Consider a fully ob-
servable Markov decision process (𝒮 ,𝒜 , 𝛼, 𝑟) and consider a discount factor 𝛾 ∈ [0, 1). Then
there is a deterministic Bellman optimal policy 𝜋∗ ∈ Δ𝒮𝒜 .

Proof. Fix a positive initial distribution 𝜇 ∈ int(Δ𝒮𝒜). The discounted reward 𝑅 : Δ𝒮𝒜 → R
is a continuous function over a bounded set and hence admits a maximizer𝜋 ∈ Δ𝒮𝒜 , which

is Bellman optimal by Theorem 2.19. Now any deterministic greedy policy 𝜋∗ induced by

𝜋 is a deterministic optimal policy by Lemma 2.22. □

s We will see in Example 2.32 that in a POMDP the optimal memoryless policy might

be required to be stochastic and might depend on the initial distribution.

2.3 Rational structure of the reward and an explicit line theorem

The reward optimization problem (ROP) is a linearly constrained problem and hence

the complexity of this problem depends on the objective function. It is known that the

reward function is non concave [50] and in the mean reward case it was shown to be a

rational function of degree at most |𝒮| [123]. We have seen in Proposition 2.10 that the

reward function for discounted problems obtains an explicit expression as the fraction

of two determinantal polynomials. We use this to establish an interpretable connection

between the rational degree of the reward function and the observations available from

the Markov decision process. We postpone the proofs to the later subsections and only

discuss the consequences of the results here.

Definition 2.24 (Degree of a rational function). We say that a function 𝑓 : Ω → R𝑚 is a

rational function if it admits a representation of the form 𝑓𝑖 = 𝑝𝑖/𝑞𝑖 for polynomials 𝑝𝑖 and

𝑞𝑖 . We say that 𝑓 is of degree at most 𝑘 if the polynomials 𝑝𝑖 and 𝑞𝑖 have degree at most 𝑘.

Finally, we say that 𝑓 : Ω→ R𝑚 is a rational function with common denominator if it admits

a representation of the form 𝑓𝑖 = 𝑝𝑖/𝑞 for polynomials 𝑝𝑖 and 𝑞.
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We use the expression (2.12) of the reward function 𝑅 as a rational function to bound

its rational degreein terms of the observation kernel 𝛽. The result follows from the general

result regarding the degree of determinantal polynomials in Proposition 2.37. In fact, this

proposition can be used to establish a tighter bound , where we choose the looser bound

as it offers a functional interpretation.

Theorem 2.25 (Uniqueness of stationary distributions). Consider a POMDP (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟)
and 𝛾 ∈ [0, 1). Let 𝜋0 ∈ Δ𝒪𝒜 and 𝑂 ⊆ 𝒪 be a subset of observations and let

Π𝑂 B
{
𝜋 ∈ Δ𝒪𝒜 : 𝜋(·|𝑜) = 𝜋0(·|𝑜) for all 𝑜 ∈ 𝒪 \ 𝑂

}
⊆ Δ𝒪𝒜

denote all policies that agree with 𝜋0 on all observations 𝑜 ∈ 𝒪 \ 𝑂. The rational degree of 𝑅 |Π𝑂

is upper bounded by

(2.31) deg(𝑅 |Π𝑂
) ≤

���{𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0 for some 𝑜 ∈ 𝑂
}���.

Remark 2.26 (Degree of the value function and the frequencies). Where Theorem 2.25 is

formulated for the reward function the bound (2.31) also holds for the value functions𝑉𝜋

as well as for the state and state-action frequencies 𝜂𝜋 and 𝜌𝜋. Note that by (2.13), (2.21)

and (2.22) these are rational functions with common denominator. In particular, this

implies that the bound (2.31) also holds for 𝑄𝜋(𝑠, 𝑎) = ∑
𝑠′∈𝒮 𝛼(𝑠′ |𝑠, 𝑎)𝑉𝜋(𝑠′).

By (2.31) the degree of the reward when varying the policy on an observation 𝑜 ∈ 𝒪 is

upper bounded by the number of states that can cause 𝑜 ∈ 𝒪 with positive probability.

Definition 2.27 (Compatible states and identifying observations). We call a state 𝑠 ∈ 𝒮
compatible with the observation 𝑜 ∈ 𝒪 if 𝛽(𝑜 |𝑠) > 0. If 𝑜 ∈ 𝒪 is compatible with at most

one state we refer to it as identifying.

For the case of an fully observable system (2.31) implies that the rational degree of the

reward when varying the policy on a single state 𝑠 ∈ 𝒮 is one. In Subsection 2.3.2 we

study the properties of rational functions with common denominator of degree one. As

a direct consequence we obtain the following result that shows that the value functions

and state-action frequencies obtained by varying a policy on one state lie on a line, which

was first observed and shown in [81]. We use a different proof strategy, which relies

on properties of rational functions that provides us with an explicit and interpretable

formula for the interpolation speed between the two endpoints of the line.

Theorem 2.28 (Explicit line theorem for MDPs). Consider an MDP (𝒮 ,𝒜 , 𝛼, 𝑟) and 𝛾 ∈ [0, 1).
Further, let 𝜋0 ,𝜋1 ∈ Δ𝒮𝒜 be two policies that differ on at most 𝑘 states. For any 𝜆 ∈ [0, 1] let
𝑉𝜆 ∈ R𝒮 and 𝜂𝜆 ∈ Δ𝒮×𝒜 , 𝜌𝜆 ∈ Δ𝒮 denote the value function and state-action frequency belonging
to the policy 𝜋0 +𝜆(𝜋1 −𝜋0) with respect to the discount factor 𝛾, the initial distribution 𝜇. Then
the rational degrees of 𝜆 ↦→ 𝑉𝜆 and 𝜆 ↦→ 𝜂𝜆 are at most 𝑘. If they differ on at most one state 𝑠 ∈ 𝒮
then

𝑉𝜆 = 𝑉0 + 𝑐(𝜆) · (𝑉1 −𝑉0) and 𝜂𝜆 = 𝜂0 + 𝑐(𝜆) · (𝜂1 − 𝜂0) for all 𝜆 ∈ [0, 1],

where

𝑐(𝜆) =
𝜆det(𝐼 − 𝛾𝑝1)
det(𝐼 − 𝛾𝑝𝜆)

=
𝜆det(𝐼 − 𝛾𝑝1)

(det(𝐼 − 𝛾𝑝1) − det(𝐼 − 𝛾𝑝0))𝜆 + det(𝐼 − 𝛾𝑝0)
= 𝜆 · 𝜌𝜆(𝑠)

𝜌1(𝑠)
.
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The theorem above describes the interpolation speed 𝑐(𝜆) in terms of the discounted

state distribution in 𝑠. This expressions extends to the case of mean rewards – note that

the determinants vanish – and the theorem can be shown to hold in this case as well, if we

set 0/0 B 0. Note that the interpolation speed does not depend on the initial condition 𝜇.

Remark 2.29. Refinements on the upper bound of the rational degree of 𝜆 ↦→ 𝑉𝜆 and

𝜆 ↦→ 𝜂𝜆 can be obtained using Proposition 2.34. Indeed, if we write 𝜂𝜆(𝑠, 𝑎) = 𝑞𝑠𝑎(𝜆)/𝑞(𝜆)
like in Proposition 2.16 those degrees can be upper bounded by

deg(𝑞𝑠𝑎) ≤ rank(𝑝1 − 𝑝0)0𝑠 + 1𝑆(𝑠) ≤ rank(𝑝1 − 𝑝0) and deg(𝑞) ≤ rank(𝑝1 − 𝑝0),
where 𝑆 ⊆ 𝒮 is the set of states on which the two policies differ; see also the proof of

Theorem 2.25 for more details. Hence, the degree of the two curves 𝜆 ↦→ 𝑉𝜆 and 𝜆 ↦→ 𝜂𝜆
is upper bounded by rank(𝑝1 − 𝑝0) ≤ 𝑛𝒮 .

Theorem 2.30 (Location of reward optimizers). Let (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) be a POMDP, 𝜇 ∈ Δ𝒮
be an initial distribution and 𝛾 ∈ [0, 1) a discount factor and let 𝜋 ∈ Δ𝒪𝒜 and denote the set of
observations 𝑜 such that |{𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0}| ≤ 1 by 𝑂. Then there is a policy �̃�, which is
deterministic on every 𝑜 ∈ 𝑂 and agrees with 𝜋 on all 𝑜 ∈ 𝒪 \ 𝑂 such that 𝑅(�̃�) ≥ 𝑅(𝜋).
Proof. For 𝑜 ∈ 𝑂, the reward function restricted to the 𝑜-component of the policy is a

rational function of degree at most one. By Corollary 2.43 degree one rational function

with common denominator are maximized at a vertex (see Subsection 2.3.3) and hence

there is a policy �̃�, which is deterministic on 𝑜 and satisfies 𝑅(�̃�) ≥ 𝑅(𝜋). Iterating over

𝑜 ∈ 𝑂 yields the result. □

A similar result showing the existence of optimal policies that are deterministic on

𝑂 was obtained in [203]. In contrast to our algebraic argument their proof relies on a

decomposition of the set of state-action frequencies into infinitely many convex pieces.

Remark 2.31 (Semialgebraic structure of level and superlevel sets for POMDPs). Consider

a POMDP (𝒮 ,𝒜 ,𝒪 , 𝛼, 𝛽, 𝑟) and fix a discount rate 𝛾 ∈ (0, 1) as well as an initial condition

𝜇 ∈ Δ𝒮 . The levelset

𝐿𝑎 B
{
𝜋 ∈ Δ𝒪𝒜 : 𝑅(𝜋) = 𝑎

}
of the reward function is the intersection of a variety generated by determinantal poly-

nomials of degree at most |𝒮| with the policy polytope Δ𝒪𝒜 . Indeed, by Theorem 2.25 the

reward function 𝑅 is the fraction 𝑓 /𝑔 of two determinantal polynomials 𝑓 and 𝑔 of degree

at most |𝒮|. The level set 𝐿𝑎 consists of all policies, such that 𝑓 (𝜋) = 𝑎𝑔(𝜋). Thus, the

levelset is given by

𝐿𝑎 = Δ𝒪𝒜 ∩
{
𝑥 ∈ R𝒪×𝒜 : 𝑓 (𝑥) − 𝑎𝑔(𝑥) = 0

}
.

Analogously, a superlevel set is the intersection{
𝜋 ∈ Δ𝒪𝒜 : 𝑅(𝜋) ≥ 𝑎

}
= Δ𝒪𝒜 ∩

{
𝑥 ∈ R𝒪×𝒜 : 𝑓 (𝑥) − 𝑎𝑔(𝑥) ≥ 0

}
of a basic semialgebraic generated by a difference of two determinantal polynomials

of degree at most |𝒮| with the policy polytope Δ𝒪𝒜 . In particular, both the levelset

and superlevel sets of POMDPs are semialgebraic sets defined by linear inequalities and

equations (corresponding to the conditional probability polytopeΔ𝒪𝒜) and a determinantal
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(in)equality of degree at most |𝒮|. This description can be used to bound the number

of connected components, which captures important properties of the loss landscape of

an optimization problem [33, 69]. By a theorem due to Łojasiewicz, level and superlevel

sets possess finitely many connected (semialgebraic) components [245, 37] and there

exist algorithmic approaches to computing the number of connected components [122]

as well as explicit upper bounds, which involve the dimension, the number of defining

polynomials as well as their degrees [36, 35]. Those results are generalizations of the

classic result due to Milnor and Thom, which bounds the sum of all Betti numbers of a

variety. If we apply the Milnor-Thom theorem to the variety

𝒱 =

{
𝑥 ∈ R𝒪×𝒜 : 𝑓 (𝑥) − 𝑎𝑔(𝑥) = 0

}
we obtain that there are at most |𝒮|(2|𝒮| − 1)|𝒪||𝒜|−1

many connected components of

𝒱. This bound neglects the determinantal nature of the defining polynomial and might

therefore be coarse.

Example 2.32 (Crying baby example continued). We return to the crying baby Exam-

ple 2.2 and compute optimal policies in this case in order to contrast the case of partially

observable models to the strong results on Bellman optimal policies for MDPs. Recall,

that 𝑠1 corresponds to the baby being hungry, 𝑜1 corresponds to the baby crying and 𝑎1

to feeding the baby. We begin by considering the underlying fully observable model.

Here, the Bellman optimal policy 𝜏∗ ∈ Δ𝒮𝒜 is to feed the baby when it is hungry and not

feed it when it is not hungry. In this case the reward – irrespective of the discount factor

and initial distribution – is3 𝑅(𝜏∗) = 0, which shows that this policy is indeed optimal as

𝑟(𝑠, 𝑎) ≤ 0 for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜 and hence 𝑅(𝜏) ≤ 0 for all 𝜏 ∈ Δ𝒮𝒜 . This reward is however

not achievable with observation based policies. In order to see this we assume first that

𝜋(𝑎1 |𝑜1) > 0 then

𝜌𝜋(𝑠2) ≥ (1 − 𝛾)(𝜇𝑠2
+ 𝛾𝜋(𝑎1 |𝑜1)𝜇𝑠1

) > 0.

Hence, we find that

𝑅(𝜋) = ⟨𝑟𝜋 , 𝜌𝜋⟩𝒮 ≤ 𝑟𝜋(𝑠2)𝜌𝜋(𝑠2) = −
1

2

(𝜋(𝑎1 |𝑜1) + 𝜋(𝑎1 |𝑜2)) 𝜌𝜋(𝑠2) < 0.

If on the other hand 𝜋(𝑎1 |𝑜1) = 0 then

𝜌𝜋(𝑠1) ≥ (1 − 𝛾)
(
𝜇𝑠1
+ 𝛾𝜇𝑠2

2

)
> 0

and consequently

𝑅(𝜋) = ⟨𝑟𝜋 , 𝜌𝜋⟩𝒮 ≤ 𝑟𝜋(𝑠2)𝜌𝜋(𝑠2) = −10𝜋(𝑎2 |𝑜1)𝜌𝜋(𝑠1) < 0.

In order to study the optimal policies of the POMDP we choose 𝛾 = 1/2. We can use the

expression (2.12) of the reward function as a rational function in the entries of the policy.

In order to simplify the expression we write 𝜋(𝑎1 |𝑜1) = 𝑝, 𝜋(𝑎1 |𝑜2) = 𝑞 and substitute

𝜋(𝑎2 |𝑜1) = 1− 𝑝 and 𝜋(𝑎2 |𝑜2) = 1− 𝑞. Hence, we consider the parameter dependent policy

class

𝜋𝑝,𝑞 =

( 𝑜1 𝑜2

𝑎1 𝑝 𝑞

𝑎2 1 − 𝑝 1 − 𝑞

)
∈ Δ𝒪𝒜 .

3Here, in slight abuse of notation we write 𝑅(𝜋) and 𝑅(𝜏) for observation-based and state-based policies.

29



Carrying out these computation we obtain in slightly informal notation

𝑅(𝑝, 𝑞) = 𝑅(𝜋𝑝,𝑞) =
−20𝑝2 − 20𝑝𝑞 + 210𝜇𝑠1

𝑝 + 20𝑝 + 10𝜇𝑠1
𝑞 + 200𝜇𝑠1

− 20

19𝑝 − 𝑞 + 22

.

We see that the degree of the reward function 𝑅(𝑝, 𝑞) in the parameter 𝑝 corresponding

to the observation 𝑜1 is 2 = |{𝑠 ∈ 𝒮 : 𝛽(𝑜1 |𝑠) > 0}|, which agrees with the number of

compatible states. On the other hand the degree in the parameter 𝑞 corresponding to

observation 𝑜2 is 1 = |{𝑠 ∈ 𝒮 : 𝛽(𝑜2 |𝑠) > 0}|. Both degrees meet the upper bound (3.21).

By Theorem 2.30 there exists an optimal policy with 𝑞 ∈ {0, 1}. In order to compute

the optimal observation based policy we make the ansatz of we never feeding the baby

when it is not crying since it is never hungry in this case, which corresponds to setting

𝑞 = 04. In this case the reward function simplifies to

𝑅(𝑝) = 𝑅(𝜋𝑝) =
−20𝑝2 + (210𝜇𝑠1

+ 20)𝑝 − 200𝜇𝑠1
− 20

19𝑝 + 22

.

The critical points 𝑝 ∈ (0, 1) are the parameters 𝑝 satisfying 𝑅′(𝑝) = 0, which is equivalent

to

19𝑝2 + 44𝑝 − 421𝜇𝑠1
− 41 = 0.

Solving for 𝑝 yields the two solutions

−44 ±
√

31996𝜇𝑠1
+ 5052

38

=
±
√

421

√
19𝜇𝑠1

+ 3 − 22

19

,

where the first solution is surely negative and hence not in the feasible domain 𝑝 ∈ [0, 1].
The second solution is surely positive since 421 · 3 = 1263 > 484 = 22

2
and is at least

2 if 𝜇𝑠1
≤ 22

421
and hence we make the choice 𝜇 = 𝛿𝑠2

. In this case the critical point of

consideration becomes

𝑝∗ =

√
3 · 421 − 22

19

≈ 0.713,

which achieves a reward of

𝑅(𝜋𝑝∗) ≈ −0.448.

We computed the reward of the four deterministic policies in Example 2.5, which where

−1,− 10

11
,− 20

41
and− 20

21
and hence the optimal reward achievable with a deterministic policy

is given by −20

41
≈ −0.488.

Remark 2.33 (Optimality in POMDPs). We collect the lessons learned from the example

above. The optimal reward achievable with memoryless stochastic policies in a POMDP

might be strictly smaller than the optimal reward of the underlying MDP [180].

In contrast to MDPs the optimal policy in a POMDPs the optimal policy might be

required to be stochastic [180]. However, with a similar approach to the proof of Theo-

rem 2.23 it is possible to strengthen Theorem 3.28 and to show that there always exists an

optimal policy 𝜋∗ ∈ Δ𝒪𝒜 such that��{𝑎 ∈ 𝒜 : 𝜋∗(𝑎 |𝑜) > 0}
�� ≤ ��{𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0}

��,
i.e., there always exists an optimal policy that randomizes between at most as many

actions as there are states leading to the observation with positive probability [203, 204].

4We do not justify this ansatz here; however, one can also compute the optimal value of 𝑝 under the

assumption 𝑞 = 1 in analogous fashion an see that it leads to a suboptimal reward.
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In POMDPs the optimal policy depends on the initial distribution, which is in contrast

to MDPs where there always exists a Bellman optimal policy.

2.3.1. Formulas for the degree of determinantal polynomials. Determinantal rep-

resentation of polynomials play an important role in convex geometry [131, 217] , but

often the emphasis is put on symmetric matrices. We complement existing results by

studying the non symmetric case here. We call 𝑝 a determinantal polynomial if it admits a

representation

(2.32) 𝑝(𝑥) = det

(
𝐴0 +

𝑚∑
𝑖=1

𝑥𝑖𝐴𝑖

)
for all 𝑥 ∈ R𝑚 ,

for some 𝐴0 , . . . , 𝐴𝑚 ∈ R𝑛×𝑛 . Let us use the notations

(2.33) 𝐴(𝑥) B 𝐴0 +
𝑚∑
𝑖=1

𝑥𝑖𝐴𝑖 and 𝐵(𝑥) B
𝑚∑
𝑖=1

𝑥𝑖𝐴𝑖 .

Proposition 2.34 (Degree of monic univariate determinantal polynomials). Let𝐴, 𝐵 ∈ R𝑛×𝑛
and let 𝐴 be invertible and let 𝜆1 , . . . ,𝜆𝑛 ∈ C denote the eigenvalues of 𝐴−1𝐵 if repeated according
to their algebraic multiplicity. Then,

𝑝 : R→ R, 𝑡 ↦→ det(𝐴 + 𝑡𝐵)
is a polynomial of degree

deg(𝑝) =
��{ 𝑗 ∈ {1, . . . , 𝑛} : 𝜆 𝑗 ≠ 0

}�� ≤ rank(𝐵).
The roots of 𝑝 are given by {−𝜆−1

𝑗
: 𝑗 ∈ 𝐽} ⊆ C. If further 𝐴−1𝐵 is symmetric, then we have

deg(𝑝) = rank(𝐵).
Proof. Let 𝐽 ⊆ {1, . . . , 𝑛} denote the set of indices 𝑗 such that 𝜆 𝑗 ≠ 0. For 𝑥 ≠ 0 we have5

𝑝(𝑡) = det(𝐴)det(𝐼 + 𝑡𝐴−1𝐵) = 𝑥𝑛 det(𝐴)det(𝐴−1𝐵 + 𝑡−1𝐼) = 𝑥𝑛 det(𝐴)𝜒𝐴−1𝐵(−𝑡−1)

= 𝑡𝑛
𝑛∏
𝑖=1

(−𝑡−1 − 𝜆𝑖) = (−1)𝑛−|𝐽 | ·
∏
𝑗∈𝐽
(−𝜆 𝑗) ·

∏
𝑗∈𝐽

(
𝑡 + 𝜆−1

𝑗

)
,

which is a polynomial of degree |𝐽 |. Note that |𝐽 | is upper bounded by the complex rank of

𝐴−1𝐵. Since the rank overC andR agree for a real matrix, we have deg(𝑝) ≤ rank(𝐴−1𝐵) =
rank(𝐵). Assume now that 𝐴−1𝐵 is symmetric, then the rank of 𝐴−1𝐵 coincides with the

number |𝐽 | of non zero eigenvalues. Further, the rank of 𝐵 and 𝐴−1𝐵 is the same. □

Remark 2.35. Note that the degree of 𝑝 can be lower than rank(𝐵), for example if

𝐴 = 𝐼 and 𝐵 =

(
1 −1

1 −1

)
=

(
1

1

) (
1 −1

)
.

Then we have rank(𝐵) = 1, but

𝑝(𝜆) = det

(
1 + 𝜆 −𝜆
𝜆 1 − 𝜆

)
= (1 + 𝜆)(1 − 𝜆) + 𝜆2 = 1

and therefore deg(𝑝) = 0. Note that in this case 𝐴−1𝐵 = 𝐵 has no non-zero eigenvalues.

We use the following Lemma to obtain result for the multivariate case.

5Here, 𝜒𝐶 (𝜆) = det(𝐶 − 𝜆𝐼) denotes the characteriztic polynomial of a matrix 𝐶.
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Lemma 2.36 (Degree of polynomials). Let 𝑝 : R𝑛 → R be a polynomial. Then there is a
direction 𝑥 ∈ R𝑛 such that 𝑡 ↦→ 𝑝(𝑡𝑥) is a polynomial of degree deg(𝑝). Moreover, for any 𝑥 ∈ R𝑛 ,
the univariate polynomial 𝑡 ↦→ 𝑝(𝑡𝑥) has degree at most deg(𝑝).
Proof. Let without loss of generality 𝑝 be non trivial. Decompose 𝑝 into its leading and

lower order terms 𝑝 = 𝑝1 + 𝑝2 and choose 𝑥 ∈ R𝑛 such that 𝑝1(𝑥) ≠ 0. Let 𝑘 B deg(𝑝),
then we have 𝑝1(𝑡𝑥) = 𝑡𝑘𝑝1(𝑥) for all 𝜇 ∈ R. Since the degree of 𝑡 ↦→ 𝑝2(𝑡𝑥) is at most 𝑘 −1,

the degree of 𝑡 ↦→ 𝑝(𝑡𝑥) = 𝑝1(𝑡𝑥) + 𝑝2(𝑡𝑥) is 𝑘. □

The following result generalizes Proposition 2.34 to multivariate determinantal poly-

nomials.

Proposition 2.37 (Degree of determinantal polynomials). Let 0 ≠ 𝑝 : R𝑚 → R be a non
trivial determinantal polynomial with the representation (2.32) and fix 𝑥0 ∈ R𝑚 with 𝑝(𝑥0) ≠ 0.
Then 𝐴(𝑥0) is invertible and for 𝑥 ∈ R𝑚 we denote the number of non zero eigenvalues counted
with (algebraic) multiplicities of the matrix 𝐴(𝑥0)−1𝐵(𝑥) by 𝑁(𝑥) ∈ {0, . . . , 𝑚}. Then

deg(𝑝) = max

𝑥∈R𝑚
𝑁(𝑥) ≤ max

𝑥∈R𝑚
rank(𝐵(𝑥)).

Proof. By Lemma 2.36 the degree of 𝑝 is the maximum of the degrees of the univariate

determinantal polynomials

𝑡 ↦→ 𝑝(𝑥0 + 𝑡𝑥) = det(𝐴(𝑥0) + 𝑡𝐵(𝑥)),
which by Propostion 2.34 is equal to 𝑁(𝑥). □

Now we come to the proof of Theorem 2.25 that we restate here for convenience.

Theorem 2.25 (Uniqueness of stationary distributions). Consider a POMDP (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟)
and 𝛾 ∈ [0, 1). Let 𝜋0 ∈ Δ𝒪𝒜 and 𝑂 ⊆ 𝒪 be a subset of observations and let

Π𝑂 B
{
𝜋 ∈ Δ𝒪𝒜 : 𝜋(·|𝑜) = 𝜋0(·|𝑜) for all 𝑜 ∈ 𝒪 \ 𝑂

}
⊆ Δ𝒪𝒜

denote all policies that agree with 𝜋0 on all observations 𝑜 ∈ 𝒪 \ 𝑂. The rational degree of 𝑅 |Π𝑂

is upper bounded by

(2.31) deg(𝑅 |Π𝑂
) ≤

���{𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0 for some 𝑜 ∈ 𝑂
}���.

Proof. Recall that 𝑅(𝜋) = (1 − 𝛾)𝑝(𝜋)/𝑞(𝜋) − 1 + 𝛾 where

𝑝(𝜋) = det(1 − 𝛾𝑝𝜋 + 𝑟𝜋𝜇𝑇) and 𝑞(𝜋) = det(𝐼 − 𝛾𝑝𝜋),
see (2.12). When restricting 𝑞 to

Π𝑂 B
{
𝜋 ∈ Δ𝒪𝒜 : 𝜋(·|𝑜) = 𝜋0(·|𝑜) for all 𝑜 ∈ 𝒪 \ 𝑂

}
⊆ Δ𝒪𝒜

the matrix 𝐼 − 𝛾𝑝𝜋 admits the representation

(𝐼 − 𝛾𝑝𝜋)𝑠𝑠′ = 𝛿𝑠𝑠′ − 𝛾
∑

𝑎∈𝒜 ,𝑜∈𝒪\𝑂
𝛽(𝑜 |𝑠)𝜋0(𝑎 |𝑜)𝛼(𝑠′ |𝑠, 𝑎) − 𝛾

∑
𝑎∈𝒜 ,𝑜∈𝑂

𝛽(𝑜 |𝑠)𝜋(𝑎 |𝑜)𝛼(𝑠′ |𝑠, 𝑎),

where we denote the last sum by 𝐵(𝜋) according to the notation (2.33). It remains to

estimate rank(𝐵(𝜋)). For this we note that 𝐵(𝜋)𝑠𝑠′ = 0 if 𝛽(𝑜 |𝑠) = 0 for all 𝑜 ∈ 𝑂. By

Proposition 2.37 we obtain

deg(𝑞 |Π𝑂
) ≤ max

𝜋
𝐵(𝜋) ≤

���{𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0 for some 𝑜 ∈ 𝑂
}���.
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The argument for

deg(𝑝 |Π𝑂
) ≤ max

𝜋
𝐵(𝜋) ≤

���{𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0 for some 𝑜 ∈ 𝑂
}���

follows analogously. □

2.3.2. A line theorem for degree-one rational functions. First, we show that degree-

one rational functions with common denominator map lines to lines, which implies that

they map polytopes to polytopes. Further, the extreme points of the range lie in the image

of the extreme points, which implies that degree-one rational functions are maximized in

extreme points – just like linear functions.

Recall that we have seen that the state-action frequencies, the reward function and the

value function of POMDPs are rational functions of degree at most |𝒮| with common

denominator. In the case of MDPs and if a policy is fixed on all but 𝑘 states, it is a rational

function with common denominator of degree at most 𝑘.

Proposition 2.38 (A line theorem). Let Ω ⊆ R𝑑 be convex and 𝑓 : Ω → R𝑚 be a rational
function of degree at most one with common denominator with 𝑓𝑖(𝑥) = 𝑝𝑖(𝑥)/𝑞(𝑥) for affine linear
functions 𝑝𝑖 , 𝑞. Then, 𝑓 maps lines to lines. More precisely, if 𝑥0 , 𝑥1 ∈ Ω, then

𝑐 : [0, 1] → [0, 1], 𝜆 ↦→ 𝑞(𝑥1)𝜆
𝑞(𝑥𝜆)

=
𝑞(𝑥1)𝜆

(𝑞(𝑥1) − 𝑞(𝑥0))𝜆 + 𝑞(𝑥0)
is strictly increasing and satisfies

(2.34) 𝑓 ((1 − 𝜆)𝑥0 + 𝜆𝑥1) = (1 − 𝑐(𝜆)) 𝑓 (𝑥0) + 𝑐(𝜆) 𝑓 (𝑥1) = 𝑓 (𝑥0) + 𝑐(𝜆)( 𝑓 (𝑥1) − 𝑓 (𝑥0)).

Further, 𝑐 is strictly convex if |𝑞(𝑥1)| < |𝑞(𝑥0)|, strictly concave if |𝑞(𝑥1)| > |𝑞(𝑥0)| and linear if
|𝑞(𝑥0)| = |𝑞(𝑥1)|.
Proof. We set 𝑥𝜆 B (1 − 𝜆)𝑥0 + 𝜆𝑥1 and compute

𝑓 (𝑥𝜆) =
𝑝(𝑥𝜆)
𝑞(𝑥𝜆)

=
(1 − 𝜆)𝑝(𝑥0) + 𝜆𝑝(𝑥1)

𝑞(𝑥𝜆)
=
(1 − 𝜆)𝑞(𝑥0)

𝑞(𝑥𝜆)
· 𝑓 (𝑥0) +

𝜆𝑞(𝑥1)
𝑞(𝑥𝜆)

· 𝑓 (𝑥1).

Noting that

𝜆𝑞(𝑥1)
𝑞(𝑥𝜆)

=
𝜆𝑞(𝑥1)

(1 − 𝜆)𝑞(𝑥0) + 𝜆𝑞(𝑥1)
= 𝑐(𝜆)

and

(1 − 𝜆)𝑞(𝑥0)
𝑞(𝑥𝜆)

+
𝜆𝑞(𝑥1)
𝑞(𝑥𝜆)

= 1

yields (2.34). Finally, we differentiate and obtain

(2.35) 𝑐′(𝜆) =
𝑞(𝑥0)𝑞(𝑥1)
𝑞(𝑥𝜆)2

.

Since 𝑞 has no root in Ω it follows that 𝑞(𝑥0) and 𝑞(𝑥1) have the same sign and hence

𝑐′(𝜆) > 0. Differentiating a second time yields

𝑐′′(𝜆) = −2𝑞(𝑥0)𝑞(𝑥1)(𝑞(𝑥1) − 𝑞(𝑥0)) · 𝑞(𝑥𝜆)−3.

Using that sgn(𝑞(𝑥𝜆)) = sgn(𝑞(𝑥0)) = sgn(𝑞(𝑥1)) yields the assertion. □

Remark 2.39. The formula (2.34) holds for all 𝜆 ∈ R for which 𝑥𝜆 = 𝜆𝑥0 + (1 − 𝜆)𝑥1 ∈ Ω.
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Proposition 2.40 (Level sets of degree one rational functions). Let Ω ⊆ R𝑑 be convex and
𝑓 : Ω→ R be a rational function of degree at most one. Then, 𝐿𝛼 B {𝑥 ∈ Ω : 𝑓 (𝑥) = 𝛼} is the
intersection of an affine space with Ω.
Proof. For any 𝑥, 𝑦 ∈ 𝐿𝛼 the ray {𝑥 + 𝑡(𝑦 − 𝑥) : 𝑡 ∈ R} ∩Ω is contained in 𝐿𝛼 by the line

theorem. □

2.3.3. Extreme points of degree-one rational functions. It is well known that linear

functions obtain their maxima in extreme points. We show that this is also the case for

rational functions of degree at most one.

Definition 2.41. Let Ω ⊆ R𝑑. Then we call 𝑥 ∈ Ω an extreme point of Ω if 𝑥 is not the strict

convex combination of two other points in Ω, i.e., if 𝑥 = (1−𝜆)𝑥0 +𝜆𝑥1 for 𝑥0 , 𝑥1 ∈ Ω and

𝜆 ∈ (0, 1) implies 𝑥0 = 𝑥1 = 𝑥. We denote the set of extreme points of Ω by extr(Ω).
Proposition 2.42. Let Ω ⊆ R𝑑 be convex and 𝑓 : Ω → R𝑚 be a rational function of degree at
most one with common denominator. Then 𝑓 (Ω) is convex. If in addition Ω is compact then
extr( 𝑓 (Ω)) ⊆ 𝑓 (extr(Ω)).
Proof. Let 𝑦0 = 𝑓 (𝑥0), 𝑦1 = 𝑓 (𝑥1) ∈ 𝑓 (Ω). Then by the line theorem, the line connecting 𝑦0

and 𝑦1 agrees with the image of the line connecting 𝑥0 and 𝑥1 under 𝑓 , in particular, it is

contained in 𝑓 (Ω), which shows the convexity of 𝑓 (Ω).
Assume now that Ω is compact and pick an extreme point 𝑦 = 𝑓 (𝑥) ∈ extr( 𝑓 (Ω)). If

𝑥 ∈ extr(Ω), there is nothing to show, so let 𝑥 ∉ extr(Ω). By the Krein-Milman theorem a

convex and compact set is the closed convex hull of its extreme points [8] and hence by

the Carathéodory theorem [318] we can write 𝑥 as a strict convex combination

∑𝑛
𝑖=1

𝜆𝑖𝑥𝑖
for some 𝜆𝑖 > 0, 𝑛 ≥ 2 for some extreme points 𝑥𝑖 ∈ extr(Ω) (in fact, Carathéodory’s

theorem ensures that 𝑛 ≤ 𝑑 + 1). In particular, it is possible to write 𝑥 as the strict convex

combination 𝑥 = (1−𝜆)𝑥0 + 𝜆𝑥1, 𝜆 ∈ (0, 1) by setting 𝑥0 B
∑𝑛
𝑖=2

𝜆𝑖𝑥𝑖 . By the line theorem

we have

𝑦 = (1 − 𝑐(𝜆)) 𝑓 (𝑥0) + 𝑐(𝜆) 𝑓 (𝑥1),
where 𝑐(𝜆) ∈ (0, 1); here we use the strict monotonicity of 𝑐. Since 𝑦 is an extreme point

it holds that 𝑓 (𝑥0) = 𝑓 (𝑥1) = 𝑦. In particular, this shows that 𝑦 = 𝑓 (𝑥1) ∈ 𝑓 (extr(Ω)). □

Corollary 2.43 (Maximizers of degree-one rational functions). Let Ω ⊆ R𝑑 be a convex
and compact set and let 𝑓 : Ω → R be a rational function of degree at most one with common
denominator. Then 𝑓 is maximized in at least one extreme point of Ω. In particular, if Ω is a
polytope, 𝑓 is maximized in at least one vertex.
Proof. Since Ω is compact and 𝑓 is continuous, 𝑓 (Ω) is a compact interval 𝑓 (Ω) = [𝛼, 𝛽].
By the preceding proposition we have {𝛼, 𝛽} = extr( 𝑓 (Ω)) ⊆ 𝑓 (extr(Ω)), which shows that

𝑓 is maximized in at least one extreme point. □

Corollary 2.44. Let 𝑃 ⊆ R𝑑 be a polytope and 𝑓 : Ω→ R𝑚 be a rational function of degree at most
one with common denominator. Then 𝑓 (𝑃) is a polytope and we have vert( 𝑓 (𝑃)) ⊆ 𝑓 (vert(𝑃)).
Proof. By the preceding proposition, 𝑓 (𝑃) is convex. Further, 𝑓 (𝑃) has finitely many

extreme points since extr( 𝑓 (𝑃)) ⊆ 𝑓 (extr(𝑃)) = 𝑓 (vert(𝑃)), which implies the assertion. □

Since the policies form a product Δ𝒮𝒜 of simplices we now study products of polytopes.
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Proposition 2.45. Let 𝑓 : 𝑃 → R𝑚 be defined on the Cartesian product 𝑃 = 𝑃1 × · · · × 𝑃𝑘 of
polytopes, which is a degree-one rational function with common denominator whenever all but one
components are fixed. Then 𝑓 (𝑃) has finitely many extreme points and it holds that

extr( 𝑓 (𝑃)) ⊆ 𝑓 (vert(𝑃)) = 𝑓 (vert(𝑃1) × · · · × vert(𝑃𝑘)).

In particular, if 𝑚 = 1 this shows that 𝑓 is maximized in at least one vertex of 𝑃.

Proof. Let now 𝑥 = (𝑥(1) , . . . , 𝑥(𝑘)) ∈ 𝑃1 × · · · × 𝑃𝑘 be such that 𝑓 (𝑥) ∈ extr( 𝑓 (𝑃)). If

𝑥(𝑖) ∈ vert(𝑃𝑖), there is nothing to show. Hence, we assume that 𝑥(𝑖) ∉ vert(𝑃𝑖). Let

us denote the restriction of 𝑓 onto 𝑃𝑖 by 𝑔, where we keep the other components fixed

to be 𝑥(𝑗). Then we have 𝑔(𝑥(𝑖)) ∈ extr(𝑔(𝑃𝑖)) and hence by Proposition 2.42 there is

�̃�(𝑖) ∈ vert(𝑃𝑖) such that 𝑔(�̃�(𝑖)) = 𝑔(𝑥(𝑖)) = 𝑓 (𝑥). Replacing 𝑥(𝑖) by �̃�(𝑖) and iterating over 𝑖

yields the claim. □

We have seen that both the value function as well as the discounted state-action fre-

quencies are degree-one rational functions in the rows of the policy in the case of full

observability. Hence, the extreme points of the set of all value functions and of the set

of discounted state-action frequencies are described by the proposition above. In fact we

will see later that the discounted state-action frequencies form a polytope; further, one

can show that the set of value functions is a finite union of polytopes [81].

2.4 Solution methods for Markov decision processes

A variety of exact and approximate solution methods for Markov decision processes have

been developed. Here, we provide an overview over classic approaches where we first

focus on solution methods for fully observable problems and discuss value iteration, pol-

icy iteration, linear programming approaches and policy gradient methods. We conclude

this section by reviewing some solution methods for partially observable problems. In

order to keep our introduction to Markov decision processes short we restrict our atten-

tion within this chapter to discounted value functions and refer [187] for the suitable

generalizations for the mean reward case.

2.4.1. Value iteration. Value iteration is a classical solution method and dates back

to [256] for stochastics games and was generalized to fully observable Markov decision

processes in a series of works [46, 45, 55, 297, 54, 273, 91, 56, 284]. We limit our discussion to

the infinite horizon discounted problems and refer to the classic references as well as [235,

135, 236] for variants of value iteration for finite horizon and undiscounted problems.

Definition 2.46 (Bellman optimality operator). Inspired by the principle of Bellman opti-

mality we define the Bellman optimality operator by

(2.36) 𝑇𝛾 = 𝑇 : R𝒮 → R𝒮 , 𝑇𝑉(𝑠) B max

𝑎∈𝒜
(1 − 𝛾)𝑟(𝑠, 𝑎) + 𝛾

∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)𝑉(𝑠′).

By the Bellman optimality criterion (2.28) a policy 𝜋 ∈ Δ𝒮𝒜 is optimal if and only if the

value function 𝑉𝜋
is a fixed point of 𝑇, i.e., if 𝑇𝑉𝜋 = 𝑉𝜋

.

Theorem 2.47 (Convergence of value iterates). The operator 𝑇𝛾 is a 𝛾-contraction, i.e., for all
𝑉,𝑊 ∈ R𝒮 it holds that ∥𝑇𝛾𝑉 − 𝑇𝛾𝑊 ∥∞ ≤ 𝛾∥𝑉 −𝑊 ∥∞. Hence, 𝑇𝛾 possesses a unique fixed
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point𝑉∗ ∈ R𝒮 , which agrees with the value function of a Bellman optimal policy. For any𝑉0 ∈ R𝒮
the sequence 𝑉𝑘 B 𝑇 𝑘𝛾𝑉0 convergence to 𝑉∗ and it holds that

∥𝑉𝑘 −𝑉∗∥∞ ≤
𝛾𝑘

1 − 𝛾
· ∥𝑉0 −𝑉1∥∞ and ∥𝑉𝑘 −𝑉∗∥∞ ≤ 𝛾𝑘 · ∥𝑉0 −𝑉∗∥∞.

Proof. Once the 𝛾 contraction is established everything else is a direct consequence of

Banach’s fixed point theorem [118]. Note that in general it holds that����sup

𝑖∈𝐼
𝑥𝑖 − sup

𝑖∈𝐼
𝑦𝑖

���� ≤ sup

𝑖∈𝐼
|𝑥𝑖 − 𝑦𝑖 |.

Hence, we can estimate

��𝑇𝛾𝑉(𝑠) − 𝑇𝛾𝑊(𝑠)�� ≤ max

𝑎∈𝒜

�����𝛾∑
𝑠′

𝛼(𝑠′ |𝑠, 𝑎)(𝑉(𝑠′) −𝑊(𝑠′))
�����

≤ 𝛾 max

𝑎∈𝒜

∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)|𝑉(𝑠′) −𝑊(𝑠′)|

≤ 𝛾∥𝑉 −𝑊 ∥∞.

Taking the maximum over 𝑠 ∈ 𝒮 yields the assertion. □

The fixed point iteration 𝑉𝑘 B 𝑇 𝑘𝑉0 described in Algorithm 1 is commontly referred

to as value iteration and converges exponentially quickly to the optimal value function.

Algorithm 1 Bellman’s value iteration (VI)

Require: 𝑉0 ∈ R𝒮 , number of iteration steps 𝑁 ∈ N
for 𝑘 = 1, . . . , 𝑁 do

𝑉𝑘+1 ← 𝑇𝑉𝑘 ⊲ Requires 𝑛2

𝒮 · 𝑛𝒜 operations

end for
return 𝜋 greedy with respect to 𝑉𝑁 ⊲ Guaranteed to be 𝑂( 𝛾

𝑁

1−𝛾 )-optimal

The next lemma bounds suboptimality of a policy that is greedy with respect to 𝑉 by

the distance of 𝑉 to the optimal value function 𝑉∗.

Lemma 2.48. Let 𝜋 ∈ Δ𝒮𝒜 be a greedy policy with respect to 𝑉 ∈ R𝒮 and let 𝑅∗ B 𝜇⊤𝑉∗ denote
the optimal reward. Then it holds that

(2.37) 𝑅∗ − 𝑅(𝜋) ≤ ∥𝑉
∗ −𝑉 ∥∞
1 − 𝛾

.
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Proof. Recall that 𝑄∗ ≥ 𝑄𝜋
. By the performance difference Lemma 2.18 we can estimate

(1 − 𝛾)(𝑅(𝜋∗) − 𝑅(𝜋)) =
∑

𝑠∈𝒮 ,𝑎∈𝒜
𝜂𝜋
∗(𝑠, 𝑎) (𝑄𝜋(𝑠, 𝑎) −𝑉𝜋(𝑠))

=
∑
𝑠∈𝒮

𝜌𝜋
∗(𝑠)

(∑
𝑎∈𝒜

𝜋∗(𝑎 |𝑠)𝑄𝜋(𝑠, 𝑎) −𝑉𝜋(𝑠)
)

≤
∑
𝑠∈𝒮

𝜌𝜋
∗(𝑠)

(∑
𝑎∈𝒜

𝜋∗(𝑎 |𝑠)𝑄∗(𝑠, 𝑎) −𝑉𝜋(𝑠)
)

=
∑
𝑠∈𝒮

𝜌𝜋
∗(𝑠) (𝑉∗(𝑠) −𝑉𝜋(𝑠))

≤ ∥𝑉𝜋∗ −𝑉𝜋∥∞.

□

Compare the bound (2.37) to the estimate

𝑅∗ − 𝑅(𝜋) ≤ 2𝛾∥𝑉∗ −𝑉 ∥∞
1 − 𝛾

,

which is often used in the literature [301, 268, 3], which is tighter for 𝛾 < 1/2 and looser

for 𝛾 > 1/2. Combining Lemma 2.48 and Theorem 2.47 yields the following result.

Corollary 2.49. Consider 𝑉0 ∈ R𝒮 and let 𝑉𝑘 B 𝑇 𝑘𝑉0 ∈ R𝒮 be the 𝑘-th iterate of the value
iteration and 𝜋𝑘 ∈ Δ𝒮𝒜 a corresponding greedy policy and let 𝜇 ∈ Δ𝒮 be an arbitrary initial
distribution. Then it holds that

𝑅∗ − 𝑅(𝜋𝑘) ≤
𝛾𝑘

1 − 𝛾
· ∥𝑉0 −𝑉∗∥∞ and(2.38)

𝑅∗ − 𝑅(𝜋𝑘) ≤
𝛾𝑘

(1 − 𝛾)2 · ∥𝑉0 −𝑉1∥∞.(2.39)

In particular, for 𝜀 > 0 we have 0 ≤ 𝑅∗ − 𝑅(𝜋𝑘) ≤ 𝜀 if

𝑘 ≥
log

(
𝜀−1(1 − 𝛾)−1∥𝑉0 −𝑉∗∥∞

)
log(𝛾−1) or(2.40)

𝑘 ≥
2 log

(
𝜀−1(1 − 𝛾)−1∥𝑉0 −𝑉1∥∞

)
log(𝛾−1) .(2.41)

The computational cost of one application of the Bellman operator 𝑇 is 𝑛2

𝒮 · 𝑛𝒜 . Hence,

from Corollary 2.49 we can deduce that the computational cost to obtain an accuracy of

𝜀 > 0 via value iteration is upper bounded by

𝑂

(
𝑛2

𝒮 · 𝑛𝒜 ·
log(𝜀−1(1 − 𝛾)−1)

log(𝛾−1)

)
= 𝑂

(
𝑛2

𝒮 · 𝑛𝒜 ·
log(𝜀−1(1 − 𝛾)−1)

1 − 𝛾

)
for 𝜀→ 0 where we used the standard estimate log(𝑡) ≤ 𝑡 − 1. Hence, the cost to compute

an approximately optimal policy with value iteration is polynomial in size of the problem

𝑛𝒮 , 𝑛𝒜 and 𝐻𝛾,𝜀 B
log(𝜀(1−𝛾))

1−𝛾 , which has only recently been proven in [114]. The quantity

𝐻𝛾,𝜀 is sometimes referred to as the (discounted approximate) horizon corresponding to 𝛾
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and 𝜀. Note that the complexity of an algorithm solving an MDP up to accuracy 𝜀 < 𝛾
4(1−𝛾)

is lower bounded by Ω(𝑛2

𝒮 · 𝑛𝒜) [75].

Corollary 2.49 guarantees that value iteration produces an approximately optimal

policy in a number of operations, which is logarithmic in the desired accuracy 𝜀 when 𝛾
is fixed. We can use this in order to show that value iteration produces a Bellman optimal

policy in finitely many steps.

Theorem 2.50 (Iteration complexity of value iteration). Consider a vector 𝑉0 ∈ R𝒮 and let
𝑉𝑘 B 𝑇 𝑘𝑉0 ∈ R𝒮 be the 𝑘-th iterate of the value iteration and 𝜋𝑘 ∈ Δ𝒮𝒜 a corresponding greedy
policy. Further, if6

𝛿 B min

{
∥𝑉∗ −𝑉𝜋∥∞ : 𝜋 ∈ Δ𝒮𝒜 is deterministic and 𝑉𝜋 ≠ 𝑉∗

}
> 0,

then 𝜋𝑘 is a Bellman optimal policy if

(2.42) 𝑘 >
log(𝛿−1(1 − 𝛾)−1∥𝑉∗ −𝑉0∥∞)

log(𝛾−1) .

Proof. By Theorem 2.47 it holds after

𝑘 >
log(𝛿(1 − 𝛾)∥𝑉∗ −𝑉0∥−1

∞ )
log(𝛾)

iterations that ∥𝑉∗ −𝑉𝜋𝑘 ∥∞ < 𝛿 and hence by the definition of 𝛿 the deterministic policy

𝜋𝑘 is Bellman optimal. □

The upper bound on the iteration complexity for value iteration required in order to

return a Bellman optimal policy depends on the horizon 𝐻𝛾 B
log(1−𝛾)

1−𝛾 as well as the

quantity 𝛿, which captures geometric information about the set of value functions of the

MDP. Bounds similar to (2.42) depending not on the geometry of value functions but

rather on the number of bits required to describe the MDP and hence on the size of state

and action space have been established in [282, 181].

In addition to the upper bound on the required iterations to return an optimal policy

in Theorem 2.50 one can construct an MDP where value iteration takes

log((1 − 𝛾)−1)
log(𝛾−1) ≥

log((1 − 𝛾)−1)
2(1 − 𝛾)

iterations to return an optimal policy [181] as well as an MDP with three states and 𝑘

actions that requires 𝑒 𝑘−3/log(𝛾−1) iterations to produce an optimal policy [115]. The

examples providing lower bounds rely on the existence of almost optimal deterministic

policies in which case the constant 𝛿→ 0 in Theorem 2.50 and our bound grows to +∞.

2.4.2. Policy iteration. Value iteration approximates the optimal value function𝑉∗ and

then returns a greedy policy with respect to the approximation. In contrast, Ronald A.

Howard proposed to work with policies rather than value functions and improve them

iteratively through greedy updates [142, 55, 285]. For this a policy evaluation step com-

puting the value function of a policy is required. This method is called policy iteration
and formalized in Algorithm 2. An attractive property of policy iteration is that a pol-

icy returned by Algorithm 2 surely is Bellman optimal due to the policy improvement

Lemma 2.22. If the greedy policies are chosen to be deterministic then policy iteration is

6Note that 𝛿 > 0 whenever there is at least one suboptimal deterministic policy.
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Algorithm 2 Howard’s policy iteration (PI)

Require: 𝜋0 ∈ Δ𝒮𝒜
𝑉0 ← 𝑉𝜋0

𝑘 ← 0

while true do
Choose 𝜋𝑘+1 greedy with respect to 𝜋𝑘 ⊲ Uses 𝑉 = 𝑉𝜋𝑘

𝑉𝑘+1 ← 𝑉𝜋𝑘+1 ⊲ Requires 𝑂(𝑛2

𝒮𝑛𝒜 + 𝑛
3

𝒮) operations

if 𝑉𝑘+1 = 𝑉𝑘 then
break

end if
𝑘 ← 𝑘 + 1

end while
return 𝜋𝑘 ⊲ Guaranteed to be Bellman optimal

terminate to converge in at most 𝑛
𝑛𝒮
𝒜 steps since it can at visit every deterministic policy at

most once. Where this naive upper bound ensures a convergence in exponentially many

steps we can deduce another convergence result by comparing policy to value iteration.

Lemma 2.51 (Policy vs. value iteration). Consider a policy 𝜋 ∈ Δ𝒮𝒜 and let 𝜋′ ∈ Δ𝒮𝒜 be a
greedy improvement of 𝜋. Then it holds that 𝑉𝜋′ ≥ 𝑇𝑉𝜋 componentwise.
Proof. By the policy improvement Lemma 2.22 we have 𝑄𝜋′ ≥ 𝑄𝜋

and for 𝑠 ∈ 𝒮 we can

estimate

𝑉𝜋′(𝑠) =
∑
𝑎∈𝒜

𝜋′(𝑎 |𝑠)𝑄𝜋′(𝑠, 𝑎) ≥
∑
𝑎∈𝒜

𝜋′(𝑎 |𝑠)𝑄𝜋(𝑠, 𝑎) = max

𝑎∈𝒜
𝑄𝜋(𝑠, 𝑎) = 𝑇𝑉𝜋(𝑠).

□

This lemma lets us borrow from the convergence analysis of value iteration.

Theorem 2.52 (Iteration complexity of policy iteration). Let 𝜋0 ,𝜋1 , . . . ∈ Δ𝒮𝒜 be a sequence
of deterministic policies produced by policy iteration, see Algorithm 2. Then policy iteration
terminates in at most 𝑛𝑛𝒮𝒜 steps. Further, if7

Δ B
min

{
∥𝑉∗ −𝑉𝜋∥∞ : 𝜋 ∈ Δ𝒮𝒜 is deterministic and 𝑉𝜋 ≠ 𝑉∗

}
max

{
∥𝑉∗ −𝑉𝜋∥∞ : 𝜋 ∈ Δ𝒮𝒜 is deterministic

} > 0,

then policy iteration terminates in at most

(2.43)

⌈
log(Δ(1 − 𝛾))

log(𝛾)

⌉
+ 2

steps.
Proof. Policy iteration requires at most 𝑛𝒮𝒜 − 1 steps to visit all 𝑛𝒮𝒜 deterministic policies

and requires one additional step to certify the Bellman optimality of the policy and to

terminate.

7Note that Δ > 0 whenever there is at least one suboptimal deterministic policy.
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By Theorem 2.50 and Lemma 2.51 the policy 𝜋𝑘 is Bellman optimal for

𝑘 >
log(𝛿−1(1 − 𝛾)−1∥𝑉∗ −𝑉0∥∞)

log(𝛾−1) .

Now we estimate

∥𝑉∗ −𝑉0∥∞ = ∥𝑉∗ −𝑉𝜋0 ∥∞ ≤ sup

{
∥𝑉∗ −𝑉𝜋∥∞ : 𝜋 ∈ Δ𝒮𝒜

}
.

It remains to show that the supremum is attained at a deterministic policy. The supremum

however is attained at the value function �̃�∗ corresponding to a deterministic Bellman

optimal policy corresponding to the reward vector 𝑟 B −𝑟, which satisfies �̃�∗ ≤ 𝑉𝜋
for

any 𝜋 ∈ Δ𝒮𝒜 . Consequently we have

∥𝑉∗ −𝑉𝜋∥∞ = max

𝑠∈𝒮
𝑉∗(𝑠) −𝑉𝜋(𝑠) ≤ max

𝑠∈𝒮
𝑉∗(𝑠) − �̃�∗(𝑠) = ∥𝑉∗ − �̃�∗∥∞.

This shows that the policy 𝜋𝑘 is optimal after at most⌈
log(Δ(1 − 𝛾))

log(𝛾)

⌉
+ 1

and terminates after one additional step. □

Note that the upper bound from Theorem 2.52 does not directly depend on the size of

the state and action space but rather on the constant Δ encoding geometric information of

the set of value functions of the MDP. Note that the required number of iterations (2.43)

can be upper bounded by

(2.44)

⌈
log(Δ−1(1 − 𝛾)−1)

1 − 𝛾

⌉
This is on contrast to most bounds in the literature that depend on the problem size

including the tightest known upper bound

𝑂

(
𝑛𝒜 log((1 − 𝛾)−1)

1 − 𝛾

)
that is due to [309, 248]. Note that this bound can neither recover our upper bound nor can

it be recovered by our upper bound since Δ can decrease towards 0 for fixed 𝑛𝒜 but also

remain bounded away from 0 even when 𝑛𝒜 is growing to +∞. For non fixed discount

factor lower bounds on the iteration complexity of policy iteration that are exponential in

the problem size have been established [137, 21].

2.4.3. Linear programming for MDPs. Linear programming methods for the solution

of Markov decision processes have been developed since the early 1960s [189, 86, 94, 302,

117, 80, 92, 140, 139] see also [154, 236, 310] for more contemporary overviews. We shortly

present the linear program associated to MDPs since it both is connected to the geometry of

value functions [304] and its dual formulation recovers the state-action frequencies [154]

as its variables, see also Theorem 3.5. The linear programming approach played an

important role in the study of the computational complexity of Markov decision processes

as a carefully designed interior point method was the first algorithm that was shown to

run in polynomial time for fixed discount factor [308]. Further, the simplex method

applied to the linear programming formulation is closely related to policy iteration [309].
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Recall the definition of the Bellman optimality operator defined in (2.36). The linear

programming approach is based on the following observations, see [236, Theorem 6.2.2].

Lemma 2.53 (Order relations of the Bellman operator). Denote the optimal value function by
𝑉∗ ∈ R𝒮 . The following statements hold:

(i) If 𝑉 ≤ 𝑊 componentwise for 𝑉,𝑊 ∈ R𝒮 then 𝑇𝑉 ≤ 𝑇𝑊 componentwise.
(ii) If 𝑇𝑉 ≥ 𝑉 componentwise for 𝑉 ∈ R𝒮 then 𝑉 ≥ 𝑉∗ componentwise.
(iii) If 𝑇𝑉 ≤ 𝑉 componentwise for 𝑉 ∈ R𝒮 then 𝑉 ≤ 𝑉∗ componentwise.

Proof. The statement (i) is immediate from the definition of the Bellman optimality oper-

ator. To prove (ii) we use (i) as well as Theorem 2.47 and find that

𝑉 ≥ 𝑇𝑉 ≥ 𝑇2𝑉 ≥ · · · ≥ 𝑇 𝑘𝑉 → 𝑉∗ for 𝑘 →∞.

Finally, (iii) follows with an analogue argument. □

Theorem 2.54 (Linear programming formulation of MDPs). The optimal value function
𝑉∗ ∈ R𝒮 is the unique solution to the following linear program

(LP) minimize𝜇⊤𝑉 sbj. to 𝑉(𝑠) ≥ 𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)𝑉(𝑠′) for 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜 ,

where 𝜇 ∈ (0,∞)𝒮 is a positive vector.

Proof. Note that the linear constraints of the linear program (LP) are equivalent to

𝑉(𝑠) ≥ max𝑎∈𝒜 𝑟(𝑠, 𝑎) + 𝛾
∑
𝑠′∈𝒮

𝛼(𝑠′ |𝑠, 𝑎)𝑉(𝑠′) = 𝑇𝑉(𝑠) for all 𝑠 ∈ 𝒮

and hence equivalent to 𝑇𝑉 ≥ 𝑉 . In particular, this shows that the optimal value function

𝑉∗ ∈ R𝒮 is a feasible point as 𝑇𝑉∗ = 𝑉∗. Further, for any feasible point of (LP) Lemma 2.53

guarantees that 𝑉 ≥ 𝑉∗. This shows that 𝑉∗ is a solution of (LP). Assume now that

𝑉 ∈ R𝒮 is a solution of the linear program LP. Then by Lemma 2.53 the feasibility 𝑇𝑉 ≥ 𝑉
yields 𝑉 ≥ 𝑉∗ and by the optimality we have 𝜇⊤𝑉 = 𝜇⊤𝑉∗. The positivity of 𝜇 implies

that 𝑉 = 𝑉∗, which shows that (LP) has 𝑉∗ as its unique solution. □

The dual problem to (LP) was studied in the classical works [189, 80, 154] and is given

by

maximize 𝑟⊤𝜂 sbj. to

∑
𝑎∈𝒜

𝜂(𝑠, 𝑎) = (1 − 𝛾)𝜇(𝑠) + 𝛾
∑
𝑠′,𝑎′

𝛼(𝑠 |𝑠′, 𝑎′)𝜂(𝑠′, 𝑎′) for 𝑠 ∈ 𝒮

and 𝜂(𝑠, 𝑎) ≥ 0 for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜.

(D-LP)

It is no coincidence that we use the symbol 𝜂 for the variables of the dual linear program-

ming formulation. Indeed, we will see in Chapter 3 that the feasible region of (D-LP) is

precisely the set of state-action frequencies of the Markov process [93, 154, 236]. In other

words (D-LP) describes the reward optimization problem in state-action space (ROP-SA)

for the case of fully observable models. In Chapter 3 we give a characterization of the set

of feasible state-action frequencies of a partially observable Markov decision process via

polynomial inequalities, which yields a generalization of the linear program (D-LP).
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2.4.4. Policy gradient methods. In machine learning it is a fundamental paradigm

to parametrize search variables and use variants of gradient based optimizers to obtain

approximate solutions of the original problem. This approach can also be taken when

optimizing the policy of a Markov decision process in order to maximize the reward

leading to so called policy gradient methods that were pioneered in [277, 40, 39]. Here, we

model the policy 𝜋𝜃 as a smoothly element in the polytope Δ𝒮𝒜 of conditional probability

distributions of actions given states, with 𝜋𝜃(𝑎 |𝑠) specifying the probability of selecting

action 𝑎 ∈ 𝒜 when currently in state 𝑠 ∈ 𝒮, for the parameter value 𝜃. Using the slightly

sloppy notation 𝑅(𝜃) = 𝑅(𝜋𝜃) the vanilla policy gradient update

𝜃𝑘+1 = 𝜃𝑘 + Δ𝑡 · ∇𝑅(𝜃𝑘).
Inspired by the seminal works of Amari [13, 16], various natural policy gradient methods

have been proposed [153, 206, 208]. In general, they take the form

𝜃𝑘+1 = 𝜃𝑘 + Δ𝑡 · 𝐺(𝜃𝑘)+∇𝑅(𝜃𝑘),
where Δ𝑡 > 0 denotes the step size, 𝐺(𝜃)+ denotes the Moore-Penrose pseudo inverse

and 𝐺(𝜃)𝑖 𝑗 = 𝑔(𝑑𝑃𝜃𝑒𝑖 , 𝑑𝑃𝜃𝑒 𝑗) is a Gram matrix defined with respect to some Riemannian

metric 𝑔 and some representation 𝑃(𝜃) of the parameter. Where the most popular choice

is given by the mixture of Fisher information matrices [153]

𝐺𝐾(𝜃)𝑖 𝑗 B
∑
𝑠

𝜌𝜃(𝑠)
∑
𝑎

𝜋𝜃(𝑎 |𝑠)𝜕𝜃𝑖 log(𝜋𝜃(𝑎 |𝑠))𝜕𝜃𝑗 log(𝜋𝜃(𝑎 |𝑠))

other choices are possible, see also Chapter 4 for a more detailed discussion. In general,

policy gradient methods converge globally when applied to fully observable problems

where vanilla policy gradient methods converge at a rate of𝑂(𝑡−1), which can be increased

to an exponential convergence 𝑂(𝑒−𝑐𝑡) for suitable choices of 𝐺(𝜃); for a more detailed

discussion of existing results we refer to Chapter 4.

2.4.5. Solution methods for POMDPs. Now we turn towards solution methods for

partially observable Markov decision processes. Reward optimization with history de-

pendent policies is equivalent to a belief state MDP, i.e., an MDP with continuous state

space. Hence, the solution methods presented above like value and policy iteration can

be applied to the belief state MDP and we refer to the survey articles [272, 254] for an

overview of belief state methods. Here, we focus on methods for solving the reward

optimization problem for memoryless stochastic policies although these methods extend

to finite memory policies for example by augmenting the state space with an external

memory [179, 231, 145]. From the approaches presented for MDPs only policy gradient

methods can be applied to POMDPs without significant adjustments, however, without

the global convergence guarantees that are available in the fully observable case. We

present two other methods for MDPs: Bellman constrained programming, which has

been proposed in [17] as well a polynomial programming approach to POMDPs general-

izing the dual linear program of MDPs, which we established in [211]. These approaches

both reformulate reward optimization as a polynomially constrained linear objective op-

timization problem and can be combined with any solver designed for such problems.

The choice of the solver will crucially influence the convergence properties where many

approaches will only yield locally optimal solutions. Note however that (global) reward

optimization in POMDPs is NP-hard in general [286].
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Bellman constrained programming. It is immediate to see that 𝑅𝜇(𝜋) = ⟨𝜇, 𝑉𝜋⟩𝒮 for

any policy𝜋 ∈ Δ𝒪𝒜 and any initial distribution𝜇 ∈ Δ𝒜 . In the light of the Bellman equation

𝑉𝜋 = 𝛾𝑝𝜋𝑉𝜋 + (1 − 𝛾)𝑟𝜋 (see Theorem 2.9), the reward optimization problem (ROP) is

equivalent to the following quadratically constrained linear program

(BCP) maximize ⟨𝜇, 𝑣⟩ subject to 𝜋 ∈ Δ𝒪𝒜 and 𝑣 = 𝛾𝑝𝜋𝑣 + (1 − 𝛾)𝑟𝜋 ,
as pointed out by [17]. We call this optimization problem the Bellman constrained program
(BCP), which can be approached with any constrained optimization method. Here, the

search variable is the tuple (𝜋, 𝑣) of a policy and its value function that are coupled by the

quadratic constraint given by the value function.

Reward optimization in state-action space and polynomial programming. Motivated

by the fact that 𝑅𝜇(𝜋) = ⟨𝑟, 𝜂𝜋⟩𝒮×𝒜 we have in general introduced the reward optimization

in state-action space (ROP-SA)

(ROP-SA) maximize ⟨𝑟, 𝜂⟩𝒮×𝒜 subject to 𝜂 ∈ 𝒩𝛽 .

For fully observable problems the set of state-action frequencies agrees with the feasible

region of the dual linear program and the reward optimization problem in state-action

space (ROP-SA) is precisely given by the dual linear program (D-LP). The main contribu-

tion of Chapter 3 is the characterization of the set𝒩𝛽
of feasible state-action frequencies by

polynomial inequalities. In particular, this generalizes the dual linear program of MDPs

to a polynomial program describing reward optimization in POMDPs.
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CHAPTER 3

State-action geometry of partially observable MDPs

The state-action frequency 𝜂𝜋 describes the relative (discounted) time the individual

states and actions are visited in a Markov decision process when following a given policy

𝜋. The reward of a policy can be computed by weighting the reward 𝑟(𝑠, 𝑎) of a state-action

pair with the state-action frequency 𝜂𝜋, see (2.16). Hence, reward optimization can be

studied and carried out over the state-action frequencies where the resulting optimization

problem

(ROP-SA) maximize ⟨𝑟, 𝜂⟩𝒮×𝒜 subject to 𝜂 ∈ 𝒩𝛽 .

is a linear objective problem with the state-action frequencies

𝒩𝛽 = {𝜂𝜋 : 𝜋 ∈ Δ𝒪𝒜} ⊆ Δ𝒮×𝒜

as a feasible set. For the reward optimization problem of maximizing 𝑅(𝜋) subject to

𝜋 ∈ Δ𝒪𝒜 much of the complexity lies in the objective 𝑅 as the feasible set is given by

a polytope and hence described by linear constraints. In contrast, the complexity of

the the reward optimization problem (ROP-SA) lies in the geometry of the feasible set

𝒩𝛽
. The first systematic study of the geometry of the set of state-action frequencies was

carried out by Cyrus Derman who showed that for fully observable problems they form a

polytope𝒩 . that we refer to as the state-action polytope [93]. In particular, this polytope

coincides with the feasible region of the dual linear programming formulation (D-LP)

that was previously studied [189, 94, 80]. For partially observable systems however, a

decomposition of the set of state-action frequencies𝒩𝛽
into infinitely many convex pieces

was obtained in [203].

In this chapter we obtain an explicit description of the set 𝒩𝛽
of feasible state-action

frequencies via polynomial constraints for which we give explicit expression under some

conditions, see Section 3.2. For a deterministic observation process we show that the fea-

sible state-action frequencies are described by a product of varieties of rank one matrices.

In particular, this yields a description of the reward optimization problem as a poly-

nomially constrained linear objective problem and establishes a connection of POMDPs

to the field of (semi-)algebraic statistics and applied algebraic geometry. In Section 3.3

we use the explicit characterizations of the feasible region 𝒩𝛽
of the reward optimiza-

tion problem (ROP-SA) as a polynomially constrained set to gain insight regarding the

properties of the reward optimization problem. More precisely, we use the theory of

the algebraic degree of an optimization problem to bound on the number of critical points

of the optimization problem over the individual faces of the policy polytope Δ𝒪𝒜 . In

Section 3.4, we demonstrate that the reward optimization problem in state-action space

can be solved with different approaches like interior point methods, numerical algebraic

software and a convex relaxation as a semidefinite program. We find that solving the

reward maximization problem in state-action space is more stable. A further benefit is
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that convex relaxations are able to provide globally optimal solutions. Before we study

the geometry of the set 𝒩𝛽
of feasible state-action frequencies of a POMDP we present

the fully observable case in Section 3.1.

Recall that we work under the following ergodicity assumption.

Assumption 2.14 (Uniqueness of stationary distributions). If 𝛾 = 1, we assume that for

any policy 𝜋 ∈ Δ𝒪𝒜 there exists a unique stationary distribution 𝜂 ∈ Δ𝒮×𝒜 of 𝑃𝜋.

3.1 The state-action polytope of fully observables systems

The set of all state-action frequencies is known to be a polytope in the fully observable

case [93, 154]. We generalize the approach of [203] to incorporate the discounted case

for a proof of this result and show that the polytope of state-action frequencies is com-

binatorially equivalent to the policy polytope Δ𝒮𝒜 under mild assumptions. We do so

by computing the derivative of the state-action distributions, which also yields the well

known policy gradient theorem as a consequence.

Let 𝜈
𝜋,𝜇
𝛾 = 𝜈𝜋 ∈ Δ𝒮×𝒮 denote the expected number of transitions from 𝑠 to 𝑠′ given by

(1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′) and lim

𝑇→∞

1

𝑇

𝑇−1∑
𝑡=0

P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′)

respectively. Note that we have

𝜈𝜋(𝑠, 𝑠′) =
∑
𝑎∈𝒜

𝜂𝜋(𝑠, 𝑎)𝛼(𝑠′ |𝑠, 𝑎),
(3.1)

which can be seen through explicit computation, e.g., in the discounted case as

𝜈𝜋(𝑠, 𝑠′) = (1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡P𝜋,𝜇(𝑆𝑡 = 𝑠)𝑝𝜋(𝑠′, 𝑠)

= (1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡P𝜋,𝜇(𝑆𝑡 = 𝑠)
∑
𝑎∈𝒜
(𝜋 ◦ 𝛽)(𝑎 |𝑠)𝛼(𝑠′ |𝑠, 𝑎)

= (1 − 𝛾)
∞∑
𝑡=0

𝛾𝑡P𝜋,𝜇(𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)𝛼(𝑠′ |𝑠, 𝑎)

=
∑
𝑎∈𝒜

𝜂𝜋(𝑠, 𝑎)𝛼(𝑠′ |𝑠, 𝑎)

and similarly for the mean reward case.

Hence, 𝜈𝜋 is the image of 𝜂𝜋 under the linear transformation

(3.2) 𝑓𝛼 : Δ𝒮×𝒜 → Δ𝒮×𝒮 , 𝜂 ↦→
(∑
𝑎∈𝒜

𝜂(𝑠, 𝑎)𝛼(𝑠′ |𝑠, 𝑎)
)
𝑠,𝑠′∈𝒮

.

Therefore, we can hope to obtain a characterization of 𝒩 using this mapping. In order

to do so, we would like to understand the structural properties of 𝜈
𝜋,𝜇
𝛾 . For 𝛾 = 1 those

distributions have equal marginals since we can compute∑
𝑠′∈𝒮

𝜈
𝜋,𝜇
1
(𝑠, 𝑠′) −

∑
𝑠′∈𝒮

𝜈𝜋
1
(𝑠′, 𝑠) = lim

𝑇→∞

1

𝑇

(
P𝜋,𝜇(𝑆0 = 𝑠) − P𝜋,𝜇(𝑆𝑇+1 = 𝑠)

)
= 0.(3.3)
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Note that

∑
𝑠′∈𝒮 𝜈

𝜋,𝜇
1
(𝑠, 𝑠′) = ∑

𝑠′∈𝒮 𝜈
𝜋,𝜇
1
(𝑠′, 𝑠) = 𝜌

𝜋,𝜇
1
(𝑠) is the (unique) stationary state

distribution. In the discounted case, we compute similarly∑
𝑠′∈𝒮

𝜈𝜋𝛾 (𝑠, 𝑠′) − 𝛾
∑
𝑠′∈𝒮

𝜈𝜋𝛾 (𝑠′, 𝑠) = (1 − 𝛾)
( ∞∑
𝑡=0

𝛾𝑡P𝜋,𝜇(𝑆𝑡 = 𝑠) −
∞∑
𝑡=0

𝛾𝑡+1P𝜋,𝜇(𝑆𝑡+1 = 𝑠)
)

= (1 − 𝛾)𝜇(𝑠).
(3.4)

If we perceive 𝑓𝛼(𝜂𝜋𝛾) = 𝜈𝜋𝛾 ∈ Δ𝒮×𝒮 ⊆ R𝒮×𝒮 as a matrix, we have shown that

(𝜈𝜋,𝜇𝛾 )𝑇1𝒮 = 𝛾(𝜈𝜋,𝜇𝛾 )1𝒮 + (1 − 𝛾)𝜇,
which motivates the following definition.

Definition 3.1 (Discounted Kirchhoff polytope). For a distribution 𝜇 ∈ Δ𝒮 and 𝛾 ∈ [0, 1]
we define the discounted Kirchhoff polytope (this is a generalization of a definition by [296])

Ξ
𝜇
𝛾 B

{
𝜈 ∈ Δ𝒮×𝒮 ⊆ R𝒮×𝒮 : 𝜈𝑇1𝒮 = 𝛾𝜈1𝒮 + (1 − 𝛾)𝜇

}
,

where 1𝒮 ∈ R𝒮 is the all one vector.

So far, we have observed that 𝑓𝛼(𝜂𝜋,𝜇𝛾 ) ∈ Ξ
𝜇
𝛾 and we will see that 𝑓𝛼(𝜂) ∈ Ξ

𝜇
𝛾 already

implies that there is a policy 𝜋 such that 𝜂
𝜋,𝜇
𝛾 = 𝜂. This is based on the fact that for 𝜂 ∈

𝑓 −1

𝛼 (Ξ
𝜇
𝛾) a policy𝜋with state-action frequency𝜂

𝜋,𝜇
𝛾 = 𝜂 can be constructed by conditioning,

which is well known in the context of linear programming [93, 139].

Lemma 3.2. Let 𝛾 ∈ [0, 1] and 𝜂 ∈ Δ𝒮×𝒜 and let 𝜌 ∈ Δ𝒮 denote the state marginal of 𝜂 and
assume that 𝜈 = 𝑓𝛼(𝜂) ∈ Ξ𝜇

𝛾. Setting

(3.5) 𝜋(·|𝑠) B
{
𝜂(·|𝑠) = 𝜂(𝑠, ·)/𝜌(𝑠) if 𝜌(𝑠) > 0

arbitrary element in Δ𝒜 if 𝜌(𝑠) = 0,

we have 𝜂𝜋,𝜇𝛾 = 𝜂. In particular it holds that𝒩𝜇
𝛾 = 𝑓 −1

𝛼 (Ξ
𝜇
𝛾).

Proof. By (3.3) and (3.4), it holds that 𝑓𝛼(𝒩𝜇
𝛾 ) ⊆ Ξ

𝜇
𝛾 and thus𝒩𝜇

𝛾 ⊆ 𝑓 −1

𝛼 (Ξ
𝜇
𝛾).

In order to show that 𝜂𝜋 = 𝜂 for 𝜋 ∈ Δ𝒮𝒜 defined in (3.5) we calculate

𝛾(𝑃𝜋)𝑇𝜂(𝑠, 𝑎) = 𝛾
∑
𝑠′,𝑎′

𝛼(𝑠 |𝑠′, 𝑎′)𝜋(𝑎 |𝑠)𝜂(𝑠′, 𝑎′)

= 𝛾𝜋(𝑎 |𝑠)
∑
𝑠′,𝑎′

𝛼(𝑠 |𝑠′, 𝑎′)𝜂(𝑠′, 𝑎′)

= 𝛾𝜋(𝑎 |𝑠)
∑
𝑠′

𝜈(𝑠′, 𝑠)

= 𝜋(𝑎 |𝑠)
(∑
𝑠′

𝜈(𝑠, 𝑠′) − (1 − 𝛾)𝜇(𝑠)
)

= 𝜋(𝑎 |𝑠)𝜌(𝑠) − (1 − 𝛾)𝜋(𝑎 |𝑠)𝜇(𝑠)
= 𝜂(𝑠, 𝑎) − (1 − 𝛾)(𝜇 ∗ 𝜋)(𝑠, 𝑎).

The unique characterization of 𝜂
𝜋,𝜇
𝛾 as the discounted stationary distribution from Theo-

rem 2.15 yields the 𝜂
𝜋,𝜇
𝛾 = 𝜂. We have shown that for every 𝜂 ∈ 𝑓 −1

𝛼 (Ξ
𝜇
𝛾) there is a policy

𝜋 ∈ Δ𝒮𝒜 such that 𝜂
𝜋,𝜇
𝛾 = 𝜂 and hence it holds that 𝑓 −1

𝛼 (Ξ
𝜇
𝛾) ⊆ 𝒩

𝜇
𝛾 . □
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It will be convenient later to work under the following assumption in which ensures

that policies in Δ𝒮𝒜 are one-to-one with state-action frequencies.

Assumption 3.3 (Positivity). For every 𝑠 ∈ 𝒮 and 𝜋 ∈ Δ𝒪𝒜 , we assume that

∑
𝑎 𝜂

𝜋
𝑠𝑎 > 0.

Note that this positivity assumption holds in particular, if either 𝛼 > 0 and 𝛾 > 0 or

𝛾 < 1 and 𝜇 > 0 or componentwise. Indeed, if 𝛼 > 0, then the transition kernel 𝑝𝜋 is

strictly positive for any policy since

𝑝𝜋(𝑠′ |𝑠) =
∑
𝑎

(𝜋 ◦ 𝛽)(𝑎 |𝑠)𝛼(𝑠′ |𝑠, 𝑎) > 0,

since (𝜋◦𝛽)(𝑎 |𝑠) > 0 for some 𝑎 ∈ 𝒜. Using that 𝜌
𝜋,𝜇
𝛾 is discounted stationary with respect

to 𝑝𝜋 (see Theorem 2.15), it holds that

𝜌
𝜋,𝜇
𝛾 (𝑠) = 𝛾

∑
𝑠′

𝜌
𝜋,𝜇
𝛾 (𝑠′)𝑝𝜋(𝑠 |𝑠′) + (1 − 𝛾)𝜇(𝑠) > 0

since 𝜌
𝜋,𝜇
𝛾 (𝑠′) > 0 for some 𝑠′ ∈ 𝒮. If 𝜇 > 0 and 𝛾 < 1, then 𝜌

𝜋,𝜇
𝛾 (𝑠) ≥ (1 − 𝛾)𝜇(𝑠) > 0.

Assumption 3.3 is standard in linear programming approaches and necessary for the

convergence of policy gradient methods in MDPs [154, 200].

Proposition 3.4 (Inverse of state-action map). Under Assumption 3.3, the mapping

Ψ : Δ𝒮𝒜 →𝒩 , 𝜋 ↦→ 𝜂𝜋

is rational and bĳective with rational inverse given by conditioning

Ψ−1

: 𝒩 → Δ𝒮𝒜 , 𝜂 ↦→ 𝜋, where 𝜋(𝑎 |𝑠) =
𝜂(𝑠, 𝑎)∑
𝑎′ 𝜂(𝑠, 𝑎′)

.

Proof. We have seen in Remark 2.26 that Ψ is a rational map. By Lemma 3.2 it is one to

one under Assumption 3.3 with conditioning as an inverse. □

As a consequence of Lemma 3.2, we obtain the following characterization of 𝒩𝜇
𝛾 as a

polytope, which dates back to the work of Cyrus Derman on state-action frequencies [93].

Theorem 3.5 (State-action polytope). Let (𝒮 ,𝒜 , 𝛼, 𝑟) be an MDP, 𝜇 ∈ Δ𝒮 be an initial
distribution and 𝛾 ∈ [0, 1]. The state-action frequencies of the MDP form a polytope given by
𝒩 = 𝒩𝜇

𝛾 = Δ𝒮×𝒜 ∩ ℒ, where

(3.6) ℒ B
{
𝜂 ∈ R𝒮×𝒜 : ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮

}
is an affine space defined by the functions

(3.7) ℓ𝑠(𝜂) B
∑
𝑎∈𝒜

𝜂𝑠𝑎 − 𝛾
∑

𝑠′∈𝒮 ,𝑎′∈𝒜
𝜂𝑠′𝑎′𝛼(𝑠 |𝑠′, 𝑎′) − (1 − 𝛾)𝜇𝑠 .

For 𝛾 ∈ [0, 1), it holds that𝒩 = 𝒩𝜇
𝛾 = R𝒮×𝒜≥0

∩ ℒ .

Proof. It remains to spell out the characterization𝒩𝜇
𝛾 = 𝑓 −1

𝛼 (Ξ
𝜇
𝛾) explicitely. For 𝜂 ∈ Δ𝒮×𝒜

the statement 𝜂 ∈ 𝒩𝜇
𝛾 is equivalent to 𝜂 ∈ Δ𝒮×𝒜 and 𝜈 B 𝑓𝛼(𝜂) ∈ Ξ𝜇

𝛾. Using the definition

of Ξ
𝜇
𝛾 this equivalent to ∑

𝑠′
𝜈(𝑠, 𝑠′) = 𝛾

∑
𝑠′

𝜈(𝑠′, 𝑠) + (1 − 𝛾)𝜇(𝑠)
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for all 𝑠 ∈ 𝒮. Plugging in the definition of 𝑓𝛼 we see that the term on the left hand side is

equivalent to ∑
𝑠′

∑
𝑎

𝜂(𝑠, 𝑎)𝛼(𝑠′ |𝑠, 𝑎) =
∑
𝑎

𝜂(𝑠, 𝑎) = ⟨𝛿𝑠 ⊗ 1𝒜 , 𝜂⟩𝒮×𝒜

and the first term of the right hand side equals

𝛾
∑
𝑠′

∑
𝑎

𝜂(𝑠′, 𝑎)𝛼(𝑠 |𝑠′, 𝑎)

Hence, we have seen that 𝑓𝛼(𝜂) ∈ Ξ𝜇
𝛾 is equivalent to the condition

(3.8) ℓ𝑠(𝜂) =
∑
𝑎∈𝒜

𝜂𝑠𝑎 − 𝛾
∑

𝑠′∈𝒮 ,𝑎′∈𝒜
𝜂𝑠′𝑎′𝛼(𝑠 |𝑠′, 𝑎′) − (1 − 𝛾)𝜇(𝑠) = 0 for all 𝑠 ∈ 𝒮 ,

which shows that𝒩 = Δ𝒮×𝒜 ∩ ℒ.

For 𝛾 ∈ [0, 1) and 𝜂 ∈ ℒ it holds that

0 =
∑
𝑠∈𝒮

ℓ𝑠(𝜂) = (1 − 𝛾)
∑
𝑠′,𝑎′

𝜂(𝑠′, 𝑎′) − (1 − 𝛾)𝜇𝑠 ,

which implies

∑
𝑠′,𝑎′ 𝜂(𝑠′, 𝑎′) = 1. Hence, it holds that𝒩 = Δ𝒮×𝒜 ∩ ℒ = R𝒮×𝒜≥0

∩ ℒ. □

Example 3.6 (A fully observable baby). We continue the crying baby example and compute

the state-action frequencies of the underlying MDP, i.e., that we could achieve when we

knew whether the baby is hungry or not at the time of our decision. The affine linear

functions ℓ𝑠 from (3.7) take the form

ℓ𝑠1
(𝜂) = 𝜂𝑠1𝑎1

+ 𝜂𝑠1𝑎2
− 𝛾(𝜂𝑠1𝑎2

+ 0.1𝜂𝑠2𝑎2
) − (1 − 𝛾)𝜇𝑠1

ℓ𝑠2
(𝜂) = 𝜂𝑠2𝑎1

+ 𝜂𝑠2𝑎1
− 𝛾(𝜂𝑠1𝑎1

+ 𝜂𝑠2𝑎1
+ 0.9𝜂𝑠2𝑎2

) − (1 − 𝛾)𝜇𝑠2
.

For the specific choice 𝛾 = 1/2 the state-action frequencies are described by

𝒩 = Δ𝒮𝒜 ∩
{
𝜂 ∈ R𝒮×𝒜 :

20𝜂𝑠1𝑎1
+ 10𝜂𝑠1𝑎2

− 𝜂𝑠2𝑎2
− 10𝜇𝑠1

= 0

−10𝜂𝑠1𝑎1
+ 10𝜂𝑠2𝑎1

+ 11𝜂𝑠2𝑎2
− 10𝜇𝑠2

= 0

}
.(3.9)

Hence, the reward optimization problem in state-action space (ROP-SA), which corre-

sponds to the dual linear program (D-LP) of the MDP takes the form

(3.10) maximize −10𝜂𝑠1𝑎2
−𝜂𝑠2𝑎1

subject to


20𝜂𝑠1𝑎1

+ 10𝜂𝑠1𝑎2
− 𝜂𝑠2𝑎2

− 10𝜇𝑠1
= 0

−10𝜂𝑠1𝑎1
+ 10𝜂𝑠2𝑎1

+ 11𝜂𝑠2𝑎2
− 10𝜇𝑠2

= 0

𝜂𝑠1𝑎1
, 𝜂𝑠1𝑎2

, 𝜂𝑠2𝑎1
, 𝜂𝑠2𝑎2

≥ 0.

We can use this formulation to solve the MDP that underlies the crying baby example in

state-action space. This is in contrast to the solution based on state policies given in 2.32.

Indeed, it is clear from the formulation that 0 is an upper bound of the optimal value

and hence, it suffices to construct a feasible point 𝜂 such that 𝜂𝑠1𝑎2
= 𝜂𝑠2𝑎1

= 0. Setting

𝜂𝑠1𝑎2
= 𝜂𝑠2𝑎1

= 0 and solving for 𝜂𝑠1𝑎1
and 𝜂𝑠2𝑎2

we obtain(
𝜂𝑠1𝑎1

𝜂𝑠2𝑎2

)
=

(
20 −1

−10 11

)−1

10𝜇 =
1

21

(
11𝜇𝑠1

+ 𝜇𝑠2

10𝜇𝑠1
+ 20𝜇𝑠2

)
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and hence a feasible point 𝜂 ≥ 0. In particular, this yields the deterministic Bellman

optimal state policy

𝜏∗ =

( 𝑠1 𝑠2

𝑎1 1 0

𝑎2 0 1

)
∈ Δ𝒮𝒜

that feeds the baby if and only if the baby is hungry.

Improvement paths. We have seen in Subsection 2.4.3 that MDPs can be solved by

means of linear programming. However, Proposition 3.2 and Theorem 3.5 together

imply the stronger statement that the reward optimization problem in MDPs is up to

reparametrization a linear program. In particular, this implies that the non existence of

bad strict local minima, which we make precise now.

Theorem 3.7 (Existence of improvement paths in MDPs). For every policy 𝜋 ∈ Δ𝒮𝒜 , there
is a continuous path connecting 𝜋 to an optimal policy along which the reward is monotone. If
further 𝜋 ↦→ 𝜂𝜋 is injective, the reward is strictly monotone along this path, if 𝜋 is suboptimal. In
particular, the superlevel sets 𝐿≥𝛼 B {𝜋 ∈ Δ𝒮𝒜 : 𝑅(𝜋) ≥ 𝛼} of MDPs are connected.

Proof. Let us fix 𝜋 ∈ Δ𝒮𝒜 and set 𝜂0 B 𝜂𝜋 and 𝜂1 be a global optimum and 𝜂𝑡 be the linear

interpolation and 𝜌𝑡 be the corresponding state marginal. Note that for 𝑠 ∈ 𝒮 it holds that

either 𝜌𝑡(𝑠) > 0 for all 𝑡 ∈ (0, 1) or 𝜌𝑡(𝑠) = 0 for all 𝑡 ∈ [0, 1]. In the latter case, we can set

𝜋𝑡(·|𝑠) to be an arbitrary element in Δ𝒜 . For the other states and 𝑡 ∈ (0, 1) we can define

the policy through conditioning by 𝜋𝑡(𝑎 |𝑠) B 𝜂𝑡(𝑠, 𝑎)/𝜌𝑡(𝑠) and will continuously extend

the definition to 𝑡 ∈ {0, 1} in the following. If 𝜌0(𝑠) > 0 or 𝜌1(𝑠) > 0, then the definition

extends naturally. Suppose that 𝜌0(𝑠) = 0, then we now that 𝜌1(𝑠) > 0 since otherwise

𝜌𝑡(𝑠) = 0 for all 𝑡 ∈ [0, 1]. Now for 𝑡 > 0 it holds that

𝜋𝑡(𝑠, 𝑎) =
𝜂𝑡(𝑠, 𝑎)
𝜌𝑡(𝑠)

=
(1 − 𝑡)𝜂0(𝑠, 𝑎) + 𝑡𝜂1(𝑠, 𝑎)
(1 − 𝑡)𝜌0(𝑠) + 𝑡𝜌1(𝑠)

=
𝑡𝜂1(𝑠, 𝑎)
𝑡𝜌1(𝑠)

=
𝜂1(𝑠, 𝑎)
𝜌1(𝑠)

,

which extends continuously to 𝑡 = 0. If 𝜌1(𝑠) = 0, then like before, 𝜋𝑡(·|𝑠) does not depend

on 𝑡 and we can extend it to 𝑡 = 1. Now we have constructed a continuous path 𝜋𝑡 , such

that 𝜂𝜋𝑡 = 𝜂𝑡 and by Lemma 3.2

𝑅(𝜋𝑡) = ⟨𝑟, 𝜂𝑡⟩ = (1 − 𝑡)⟨𝑟, 𝜂0⟩ + 𝑡⟨𝑟, 𝜂1⟩ = 𝑅(𝜋0) + 𝑡(𝑅∗ − 𝑅(𝜋0)),

which is strictly increasing if 𝜋0 is suboptimal. It remains to construct a continuous path

between 𝜋0 and 𝜋. Note that if 𝜌0(𝑠) > 0, the policies 𝜋0 and 𝜋 agree on the state 𝑠 and so

does the linear interpolation between the two policies. Now, by Lemma 3.2 we see that

every linear interpolation between 𝜋0 and 𝜋 has the state-action distribution 𝜂0. Gluing

the two paths, we obtain a path that first leaves the state-action distribution unchanged

and then increases the reward strictly up to optimality. □

Derivative of the discounted state-action frequencies. In this paragraph we discuss

the Jacobian of the parametrization 𝜋 ↦→ 𝜂𝜋 of the discounted state-action frequencies.

One motivation for this is that this Jacobian plays an important role in the relation of

critical points in the policy space and the space of discounted state-action frequencies.

Note that (1− 𝛾)(1− 𝛾𝑃𝑇𝜋 )−1(𝜇 ∗𝜋) is well defined, whenever ∥𝑃𝜋∥2 < 𝛾−1
. Hence, we can
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extend 𝜋 ↦→ 𝜂𝜋 onto the neighborhood

(3.11) 𝑈 B
{
𝜋 ∈ R𝒮×𝒜 : ∥𝑃𝜋∥2 < 𝛾−1

}
of Δ𝒮𝒜 and consider the mapping to state-action frequencies on this open set

Ψ = Ψ
𝜇
𝛾 : 𝑈 → R𝒮×𝒜 , 𝜋 ↦→ (1 − 𝛾)(1 − 𝛾𝑃𝑇𝜋 )−1(𝜇 ∗ 𝜋)

and compute the Jacobian of Ψ
𝜇
𝛾.

Lemma 3.8 (Jacobian of Ψ). For any policy 𝜋 ∈ Δ𝒮𝒜 and 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜 it holds that

(3.12) 𝜕(𝑠,𝑎)Ψ(𝜋) = 𝜌𝜋(𝑠)(𝐼 − 𝛾𝑃𝑇𝜋 )−1(𝛿𝑠 ⊗ 𝛿𝑎).

Hence, 𝜕(𝑠,𝑎)Ψ(𝜋) is identical to the (𝑠, 𝑎)-th column of (𝐼 − 𝛾𝑃𝑇𝜋 )−1 up to the scaling factor of
𝜌𝜋(𝑠). In particular, if 𝜌𝜋(𝑠) > 0 for all 𝑠 ∈ 𝒮, the Jacobian 𝐷Ψ has full rank.
Proof. Recall that for invertible matrices 𝐴(𝑡), it holds that

𝜕𝑡𝐴(𝑡)−1 = −𝐴(𝑡)−1(𝜕𝑡𝐴(𝑡))𝐴(𝑡)−1.

We compute

(1 − 𝛾)−1𝜕(𝑠,𝑎)Ψ
𝜇
𝛾(𝜋) = 𝜕(𝑠,𝑎)(𝐼 − 𝛾𝑃𝑇𝜋 )−1(𝜇 ∗ 𝜋)

= (𝜕(𝑠,𝑎)(𝐼 − 𝛾𝑃𝑇𝜋 )−1)(𝜇 ∗ 𝜋) + (𝐼 − 𝛾𝑃𝑇𝜋 )−1𝜕(𝑠,𝑎)(𝜇 ∗ 𝜋)
= −(1 − 𝛾)−1(𝐼 − 𝛾𝑃𝑇𝜋 )−1𝜕(𝑠,𝑎)(𝐼 − 𝛾𝑃𝑇𝜋 )𝜂

𝜋,𝜇
𝛾

+ (𝐼 − 𝛾𝑃𝑇𝜋 )−1(𝜇 ∗ 𝜕(𝑠,𝑎)𝜋)

= (𝐼 − 𝛾𝑃𝑇𝜋 )−1

(
(1 − 𝛾)−1𝛾(𝜕(𝑠,𝑎)𝑃𝑇𝜋 )𝜂

𝜋,𝜇
𝛾 + 𝜇 ∗ 𝜕(𝑠,𝑎)𝜋

)
.

Further, direct computation shows

((𝜕(𝑠,𝑎)𝑃𝑇𝜋 )𝜂
𝜋,𝜇
𝛾 )(𝑠, 𝑎) = 𝜕(𝑠,𝑎)𝜋(𝑎 |𝑠)

∑
𝑠′,𝑎′

𝛼(𝑠 |𝑠′, 𝑎′)𝜋(𝑎′ |𝑠′)𝜌𝜋,𝜇𝛾 (𝑠′)

= (𝑝𝑇𝜋𝜌
𝜋,𝜇
𝛾 ∗ 𝜕(𝑠,𝑎)𝜋)(𝑠, 𝑎).

Using the fact that 𝜌
𝜋,𝜇
𝛾 is the discounted stationary distribution, yields

(1 − 𝛾)−1𝛾(𝜕(𝑠,𝑎)𝑃𝑇𝜋 )𝜂
𝜋,𝜇
𝛾 + 𝜇 ∗ 𝜕(𝑠,𝑎)𝜋 = ((1 − 𝛾)−1𝛾𝑝𝑇𝜋𝜌

𝜋,𝜇
𝛾 + 𝜇) ∗ 𝜕(𝑠,𝑎)𝜋

= (1 − 𝛾)−1𝜌
𝜋,𝜇
𝛾 ∗ 𝜕(𝑠,𝑎)𝜋,

which shows (3.12). We compute

𝜌
𝜋,𝜇
𝛾 ∗ 𝜕(𝑠,𝑎)𝜋)(𝑠′, 𝑎′) = 𝜌

𝜋,𝜇
𝛾 (𝑠′)𝜕(𝑠,𝑎)𝜋(𝑎′ |𝑠′) = 𝜌

𝜋,𝜇
𝛾 (𝑠)(𝛿𝑠 ⊗ 𝛿𝑎)(𝑠′, 𝑎′).

Note that (𝐼 − 𝛾𝑃𝑇𝜋 )−1(𝛿𝑠 ⊗ 𝛿𝑎) is precisely the (𝑠0 , 𝑎0)-th column of the matrix (𝐼 − 𝛾𝑃𝑇𝜋 )−1
.

Those columns are linearly independent, and so are the partial derivatives 𝜕(𝑠,𝑎)Ψ
𝜇
𝛾(𝜋),

given that the discounted stationary distribution 𝜌
𝜋,𝜇
𝛾 vanishes nowhere. □

Corollary 3.9 (Dimension of𝒩). Assume that 𝜌𝜋,𝜇𝛾 > 0 entrywise for some policy 𝜋 ∈ int(Δ𝒮𝒜).
Then we have dim(𝒩) = dim(Δ𝒮𝒜) = |𝒮|(|𝒜| − 1).
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Proof. By Lemma 3.8 the mapping Ψ
𝜇
𝛾 is full rank in a neighborhood of 𝜋 and hence, we

have

dim(𝒩) = dim(Ψ𝜇
𝛾(Δ𝒮𝒜)) = dim(Δ𝒮𝒜).

□

Let us consider a parametrized policy model ΠΘ = {𝜋𝜃 : 𝜃 ∈ Θ} ⊆ Δ𝒮𝒜 with differen-

tiable parametrization 𝜃 ↦→ 𝜋𝜃 where Θ ⊆ R𝑝 . When unambiguous, we drop the policy

in the notation of reward, state(-action) frequncies and value functions, i.e., simply write

𝑅(𝜃), 𝜂𝜃 , 𝑄𝜃 etc. instead of 𝑅(𝜋𝜃), 𝜂𝜋𝜃 , 𝑄𝜋𝜃
.

Lemma 3.10 (Parameter derivatives of discounted state-action frequencies). It holds that

𝜕𝜃𝑖𝜂
𝜃
𝛾 = (𝐼 − 𝛾𝑃𝑇𝜋𝜃

)−1(𝜌𝜃 ∗ 𝜕𝜃𝑖𝜋𝜃),
where

(𝜌𝜃 ∗ 𝜕𝜃𝑖𝜋𝜃)(𝑠, 𝑎) = 𝜌𝜃(𝑠)𝜕𝜃𝑖𝜋𝜃(𝑎 |𝑠).
Proof. This follows directly from the application of the chain rule and (3.12). □

Using this expression, we can compute the parameter gradient with respect to the

discounted reward and recover the well known policy gradient theorem.

Theorem 3.11 (Policy gradient theorem, [277, 190, 2]). It holds that

(1 − 𝛾)𝜕𝜃𝑖𝑅(𝜃) =
∑
𝑠

𝜌𝜃(𝑠)
∑
𝑎

𝜕𝜃𝑖𝜋𝜃(𝑎 |𝑠)𝑄𝜃(𝑠, 𝑎) =
∑
𝑠,𝑎

𝜂𝜃(𝑠, 𝑎)𝜕𝜃𝑖 log(𝜋𝜃(𝑎 |𝑠))𝑄𝜃(𝑠, 𝑎).

Proof. Using the preceding lemma, we compute

𝜕𝜃𝑖𝑅(𝜃) = ⟨(𝐼 − 𝛾𝑃𝑇𝜋𝜃
)−1𝜌𝜃 ∗ 𝜕𝜃𝑖𝜋𝜃 , 𝑟⟩𝒮×𝒜

= ⟨𝜌𝜃 ∗ 𝜕𝜃𝑖𝜋𝜃 , (𝐼 − 𝛾𝑃𝜋𝜃 )−1𝑟⟩𝒮×𝒜
= (1 − 𝛾)−1⟨𝜌𝜃 ∗ 𝜕𝜃𝑖𝜋𝜃 , 𝑄𝜃⟩𝒮×𝒜
= (1 − 𝛾)−1

∑
𝑠

𝜌𝜃(𝑠)
∑
𝑎

𝜕𝜃𝑖𝜋𝜃(𝑎 |𝑠)𝑄𝜃(𝑠, 𝑎)

= (1 − 𝛾)−1

∑
𝑠,𝑎

𝜂𝜃(𝑠, 𝑎)𝜕𝜃𝑖 log(𝜋𝜃(𝑎 |𝑠))𝑄𝜃(𝑠, 𝑎).

□

The policy gradient theorem can be used to estimate the gradient of the reward function

by estimating the state frequency and the 𝑄-value function [40, 39, 207, 276] where the

derivative of the policy model 𝜕𝜃𝑖𝜋𝜃 is often relatively cheap to compute.

Remark 3.12 (Policy gradients for POMDPs). The case of partial observability can be

regarded as a special case of parametrized policies. In fact the observation mechanism

𝛽 induces a linear map 𝜋 ↦→ 𝜋 ◦ 𝛽. This interpretation shows that the policy gradient

theorem is also valid for partially observable problems.

Corollary 3.13 (Lipschitz continuity of the reward). It holds that

(3.13) ∥∇𝑅(𝜃)∥∞ ≤ max

𝑖=1,...,𝑝

∥𝑟∥∞ · ∥𝜕𝜃𝑖𝜋𝜃∥∞
1 − 𝛾

In particular, it holds that

(3.14) |𝑅(𝜋) − 𝑅(𝜋′)| ≤ ∥𝜋 − 𝜋′∥1 ·
∥𝑟∥∞
1 − 𝛾

for all 𝜋,𝜋′ ∈ Δ𝒮𝒜
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Figure 3.1. Transition graph of the example.

and

(3.15) ∥𝜂𝜋 − 𝜂𝜋′∥∞ ≤
∥𝜋 − 𝜋′∥1

1 − 𝛾
for all 𝜋,𝜋′ ∈ Δ𝒮𝒜

Proof. The estimate (3.13) follows directly from the policy gradient Theorem 3.11 since

∥𝑄𝜃∥∞ ≤ ∥𝑟∥∞ and ∥𝜌𝜃∥∞ ≤ 1. Note that (3.13) holds for any parametrization Θ → 𝑈

for the neighborhood 𝑈 of Δ𝒮𝒜 defined in (3.11). For 𝜋,𝜋′ ∈ Δ𝒮𝒜 the mean value theorem

implies the existence of �̂� ∈ Δ𝒮𝒜 such that 𝑅(𝜋) − 𝑅(𝜋′) = ∇𝑅(�̂�)⊤(𝜋 − 𝜋′) and hence we

can estimate

|𝑅(𝜋) − 𝑅(𝜋′)| = |∇𝑅(�̂�)⊤(𝜋 − 𝜋′)| ≤ ∥𝜋 − 𝜋′∥1 · ∥∇𝑅(�̂�)∥∞ ≤ ∥𝜋 − 𝜋′∥1 ·
∥𝑟∥∞
1 − 𝛾

.

The statement about the state-action frequencies follows when we perceive the entry

𝜂𝜋(𝑠, 𝑎) as the reward for 𝑟 = 𝛿(𝑠,𝑎) ∈ R𝒮×𝒜 . □

Example 3.14 (Blow up of Lipschitz constant). We convince ourselves that the bound on

the Lipschitz constant can be attained. Consider a Markov decision process with two

states and two actions and deterministic state transitions as depicted in Figure 3.1. As a

reward vector we choose 𝑟(𝑠, 𝑎) = 𝛿𝑠𝑠1
and hence the reward equals the first entry of the

state frequency, i.e., 𝑅(𝜋) = 𝜌𝜋(𝑠1). Hence, the reward is given by

𝑅(𝜋) = 𝜌𝜋(𝑠1) = 𝛿⊤𝑠1

(1 − 𝛾)(𝐼 − 𝛾𝑝𝑇𝜋)𝜇 = 𝜇𝑠1
+ 𝜇𝑠2

· 𝛾𝜋(𝑎1 |𝑠2)
1 − 𝛾 + 𝛾𝜋(𝑎1 |𝑠2)

,

where we omit the explicit computation. Hence, the reward only depends on 𝑝 = 𝜋(𝑎1 |𝑠2)
and we write 𝑅(𝑝) instead of 𝑅(𝜋). Note that

𝑅′(𝑝) = 𝜇𝑠2
· 1 − 𝛾

(1 − 𝛾 + 𝛾𝑝)2

and hence 𝑅′(𝑝) → (1 − 𝛾)−1
for 𝑝 → 0 if 𝜇 = 𝛿𝑠2

. Hence, the Lipschitz constant of the

reward 𝑅 is (1 − 𝛾)−1
, which shows that the bound (3.13) can be attained.

The face lattice in the fully observable case. So far, we have seen that the set of

state-action frequencies form a polytope in the fully observable case. However, not all

polytopes are equally complex and thus we aim to describe the face lattice of 𝒩𝜇
𝛾 , which

describes the combinatorial properties of a polytope, see [318].

Theorem 3.15 (Combinatorial equivalence of𝒩𝜇
𝛾 and Δ𝒮𝒜). Let (𝒜 ,𝒮 , 𝛼, 𝑟) be an MDP and

𝛾 ∈ [0, 1]. Then Ψ : Δ𝒮𝒜 ,𝜋 ↦→ 𝜂𝜋 induces an order preserving surjective morphism between the
face lattices of Δ𝒮𝒜 and𝒩 , such that for every 𝐼 ⊆ 𝒮 ×𝒜 it holds that

(3.16)

{
𝜋 ∈ Δ𝒮𝒜 : 𝜋(𝑎 |𝑠) = 0 for all (𝑠, 𝑎) ∈ 𝐼

}
↦→ {𝜂 ∈ 𝒩 : 𝜂(𝑠, 𝑎) = 0 for all (𝑠, 𝑎) ∈ 𝐼} .
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If in addition Assumption 3.3 holds, this is a dimension preserving isomorphism.

Proof. First, we note that the faces of both Δ𝒮𝒜 and 𝒩𝜇
𝛾 have the structure of the left and

right hand side of (3.16) respectively, which follows from Theorem 3.5. Denote now the

left and right hand side in (3.16) by 𝐹 and 𝐺 respectively, then we need to show that

Ψ(𝐹) = 𝐺. For 𝜋 ∈ 𝐹 it holds that

𝜂𝜋(𝑠, 𝑎) = 𝜌𝜋(𝑠)𝜋(𝑎 |𝑠) = 0 for all (𝑠, 𝑎) ∈ 𝐼

and hence 𝜂𝜋 ∈ 𝐺. On the other hand for 𝜂 ∈ 𝐺 we can set 𝜋(·|𝑠) B 𝜂(·|𝑠) whenever

defined and any other element such that 𝜋(𝑎 |𝑠) = 0 for all (𝑠, 𝑎) ∈ 𝐼 otherwise. Then we

surely have 𝜋 ∈ 𝐹 and by Lemma 3.2 also 𝜂𝜋 = 𝜂. To check that the mapping described

in (3.16) is a morphism, consider two faces 𝐹1 , 𝐹2 of Δ𝒮𝒜 . It holds that Ψ(𝐹1 ∧ 𝐹2) =
Ψ(𝐹1 ∩ 𝐹2) = Ψ(𝐹1) ∩Ψ(𝐹2) = 𝐺1 ∧ 𝐺2, where 𝐺𝑖 B Ψ(𝐹𝑖). Further, we have that

Ψ(𝐹1 ∨ 𝐹2) = Ψ

©«
⋂

𝐹∈ℱ (Δ𝒮𝒜 )
𝐹1 ,𝐹2⊆𝐹

𝐹

ª®®®®¬
=

⋂
𝐹∈ℱ (Δ𝒮𝒜 )
𝐹1 ,𝐹2⊆𝐹

Ψ(𝐹) =
⋂

𝐺∈ℱ (𝒩)
𝐺1 ,𝐺2⊆𝐺

𝐺 = 𝐺1 ∨ 𝐺2 ,

which shows that the join and meet are respected.

In the case that 𝜌𝜋 > 0 entrywise for all policies 𝜋 ∈ int(Δ𝒮𝒜), the mapping 𝜂 ↦→ 𝜂(·|·)
defines an inverse to Ψ, which shows that the mapping defined in (3.16) is bĳective. The

assertion on the dimension follows from basic dimension counting, from the fact that the

rank is preserved by a lattice isomorphism or by virtue of Lemma 3.8. □

State-action frequencies of history dependent policies. Consider an MDP with arbi-

trary history dependent policies. In order to study the state-action frequencies that can

be achieved with this larger policy class we follow the same approach like for memo-

ryless policies. This shows that in MDPs history dependent policies achieve the same

state-action frequencies as memoryless policies.

Theorem 3.16 (State-action frequencies of history policies). Consider an MDP (𝒮 ,𝒜 , 𝛼, 𝑟).
The set of state-action frequencies that can be achieved by history dependent policies agrees with
the state-action frequencies induced by memoryless policies. In particular, they form a polytope
with explicit expression given in Theorem 3.5. This shows that memoryless policies achieve the
same optimal reward for fully observable problems.

Proof. For a history dependent policy 𝜋 we consider the state-state transition frequencies

𝜈𝜋 = 𝑓𝛼(𝜂𝜋). Revisiting (3.3) and (3.4) reveals that they do not require the policy to be

memoryless and hence it holds that 𝑓𝛼(𝜂𝜋) ∈ Ξ
𝜇
𝛾. By Lemma 3.2 there is a memoryless

policy 𝜋′ ∈ Δ𝒮𝒜 such that 𝜂𝜋
′
= 𝜂𝜋. This shows that the state-action frequencies that can

be achieved by history and memoryless policies agree for fully observable MDPs. □

The approach of using state-action frequencies for the reduction to memoryless (sta-

tionary) policies can be traced back to [93] see also [236, 167] for further discussions

of history dependent policy classes and the reduction to memoryless policies for fully

observable systems.
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Beyond finite MDPs. The state-action frequencies of countable MDPs have been stud-

ied in [10] and were shown to form a compact and convex set where the extreme points

correspond to memoryless deterministic policies. This complements the results that for

finite MDPs the state-action frequencies form a polytope with vertices corresponding to

the deterministic policies. The reduction of history dependent policies to memoryless

policies like in Theorem 3.16 for general state and action spaces can be found in [167].

3.2 State-action geometry of partially observable systems

Now that we have revisited the classic characterization of the state-action frequencies of

an MDP as a polytope we study partially observable systems. We have seen in Proposi-

tion 2.16 that the mapping from policies to state-action frequencies is a rational function.

By the Tarski-Seidenberg theorem the image of a semialgbraic map under a rational func-

tion is again semialgebraic, i.e., the finite union of polynomially constrained sets. Since

the set of policies Δ𝒪𝒜 is a polytope the set of state-action frequencies𝒩𝛽
is a semialgebraic

set, however, the Tarski-Seidenberg theorem does not provide an explicit description of

the range. In this section we provide an explicit characterization of the set 𝒩𝛽 of feasible

state-action frequencies via polynomial inequalities. In particular, this shows that feasible

state-action frequencies of a POMDP form a (semi)algebraic statistical model.

3.2.1. General description of state-action frequencies. We start with a general de-

scription of the state-action frequencies associated to a constrained policy class of a an

MDP. Note that POMDPs can be considered as a special case of constrained MDPs with

the policy class being the effective policies Δ
𝒮 ,𝛽
𝒜 , which form a polytope inside Δ𝒮𝒜 .

Proposition 3.17 (General characterization of state-action frequencies). Consider an MDP
(𝒮 ,𝒜 , 𝛼, 𝑟), an initial distribution 𝜇 ∈ Δ𝒮 and a family of policies Π = 𝑋∩Δ𝒮𝒜 and denote the set
of feasible state-action frequencies by𝒩Π = {𝜂𝜋 : 𝜋 ∈ Π}. Under the ergodicity Assumption 2.14
and the positivity Assumption 3.3 it holds that

(3.17) 𝒩Π =

{
𝜂 ∈ R𝒮×𝒜>0

: 𝜂(·|·) ∈ 𝑋
}
∩𝒩 ,

where𝒩 is the state-action polytope, see Theorem 3.5.

Proof. This is a direct consequence of Lemma 3.2. □

For polynomially constrained policy classes this general principle implies that also the

state-action frequencies are polynomially constrained.

Theorem 3.18 (State-action frequencies of polynomially constrained policy models). Let
(𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) be a POMDP and let both the ergodicity Assumption 2.14 and the positivity
Assumption 3.3 hold and consider a polynomially constrained policy set

Π = Δ𝒮𝒜 ∩
{
𝜋 ∈ R𝒮×𝒜 : 𝑓𝑖(𝜋) ≥ 0 for 𝑖 = 1, . . . , 𝑘

}
with defining polynomials

(3.18) 𝑓𝑖(𝜋) =
𝑛∑
𝑗=1

𝑏
(𝑖)
𝑗

∏
𝑠,𝑎

𝜋(𝑠, 𝑎)𝑎
(𝑖)
𝑗
(𝑠,𝑎)

.
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Then the corresponding state-action frequencies form a polynomially constrained set given by

(3.19) 𝒩Π = 𝒩 ∩
{
𝜂 ∈ R𝒮×𝒜≥0

: ℎ𝑖(𝜂) ≥ 0 for 𝑖 = 1, . . . , 𝑘
}
,

where

(3.20) ℎ𝑖(𝜂) =
𝑛∑
𝑗=1

𝑏
(𝑖)
𝑗

∏
𝑠,𝑎

𝜂(𝑠, 𝑎)𝑎
(𝑖)
𝑗
(𝑠,𝑎)∏

𝑠

𝜌(𝑠)𝑑
(𝑖)
𝑠 −𝑎

(𝑖)
𝑗
(𝑠)

and 𝜌(𝑠) B ∑
𝑎 𝜂(𝑠, 𝑎), 𝑎

(𝑖)
𝑗
(𝑠) B ∑

𝑎 𝑎
(𝑖)
𝑗
(𝑠, 𝑎) and 𝑑(𝑖)𝑠 B max𝑗 𝑎

(𝑖)
𝑗
(𝑠). It holds that

(3.21) deg(ℎ𝑖) ≤
∑
𝑠∈𝒮

𝑑
(𝑖)
𝑠 =

∑
𝑠∈𝒮

max

𝑗=1,...,𝑛

∑
𝑎∈𝒜

𝑎
(𝑖)
𝑗
(𝑠, 𝑎).

Finally,𝒩Π is a basic semialgebraic set and𝒩Π is combinatorially equivalent to Π.
Proof. In order to use Proposition 3.17 we set

𝑋 B
{
𝜋 ∈ R𝒮×𝒜 : 𝑓𝑖(𝜋) ≥ 0 for 𝑖 = 1, . . . , 𝑘

}
.

By (3.17) the feasible state-action frequencies are described by the inequalities

𝑔𝑖(𝜂) B 𝑓𝑖(𝜂(·|·)) ≥ 0.

When 𝑓𝑖 is polynomial then 𝑔𝑖 is a rational function and takes the form

𝑔𝑖(𝜂) =
𝑛∑
𝑗=1

𝑏
(𝑖)
𝑗

∏
𝑠,𝑎

(
𝜂(𝑠, 𝑎)
𝜌(𝑠)

) 𝑎(𝑖)
𝑗
(𝑠,𝑎)

=

𝑛∑
𝑗=1

𝑏 𝑗

∏
𝑠,𝑎 𝜂(𝑠, 𝑎)

𝑎
(𝑖)
𝑗
(𝑠,𝑎)∏

𝑠 𝜌(𝑠)
𝑎
(𝑖)
𝑗
(𝑠)

,

where 𝑎
(𝑖)
𝑗
(𝑠) B ∑

𝑎∈𝒜 𝑎
(𝑖)
𝑗
(𝑠, 𝑎) and 𝜌(𝑠) = ∑

𝑎∈𝒜 𝜂(𝑠, 𝑎) denotes the state marginal. Taking

𝑑
(𝑖)
𝑠 B max𝑗 𝑎

(𝑖)
𝑗
(𝑠)we can multiply 𝑔 by

∏
𝑠 𝜌(𝑠)𝑑

(𝑖)
𝑠 to obtain a polynomial ℎ given by

ℎ(𝜂) =
𝑛∑
𝑗=1

𝑏
(𝑖)
𝑗

∏
𝑠,𝑎

𝜂(𝑠, 𝑎)𝑎
(𝑖)
𝑗
(𝑠,𝑎)∏

𝑠

𝜌(𝑠)𝑑
(𝑖)
𝑠 −𝑎

(𝑖)
𝑗
(𝑠)

such that {𝜂 ∈ R𝒮×𝒜>0
: 𝑔𝑖(𝜂) ≥ 0} = {𝜂 ∈ R𝒮×𝒜>0

: ℎ𝑖(𝜂) ≥ 0}.
Note that the degree of the polynomials ℎ𝑖 is bounded by

deg(ℎ𝑖) ≤ max

𝑗=1,...,𝑛

∑
𝑠,𝑎

𝑎
(𝑖)
𝑗
(𝑠, 𝑎) +

∑
𝑠

(𝑑(𝑖)𝑠 − 𝑎(𝑖)𝑗 (𝑠))

= max

𝑗=1,...,𝑛

∑
𝑠

𝑑
(𝑖)
𝑠 =

∑
𝑠

𝑑
(𝑖)
𝑠 =

∑
𝑠

max

𝑗

∑
𝑎

𝑎
(𝑖)
𝑗
(𝑠, 𝑎).

Regarding the combinatorial equivalence, we note that Proposition 3.2 implies that

the mapping Ψ : Δ𝒮𝒜 → 𝒩 ,𝜋 ↦→ 𝜂𝜋 induces a bĳection of the face lattices of Π and 𝒩Π

according to

𝐹𝐼 B Π ∩
{
𝜋 ∈ R𝒮×𝒜 : 𝑓𝑖(𝜋) = 0 for 𝑖 ∈ 𝐼

}
↦→ 𝐺𝐼 B 𝒩Π ∩

{
𝜂 ∈ R𝒮×𝒜≥0

: ℎ𝑖(𝜂) = 0 for 𝑖 ∈ 𝐼
}

for 𝐼 ⊆ {1, . . . , 𝑛}. It remains to show that this bĳection respects the join and meet, i.e.,

that Ψ(𝐹𝐼 ∧ 𝐹𝐽) = 𝐺𝐼 ∧ 𝐺𝐽 as well as Ψ(𝐹𝐼 ∨ 𝐹𝐽) = 𝐺𝐼 ∨ 𝐺𝐽 for any 𝐼 , 𝐽 ⊆ {1, . . . , 𝑛} where
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𝐹𝐼 ∧ 𝐹𝐽 = 𝐹𝐼 ∩ 𝐹𝐽 and 𝐹𝐼 ∨ 𝐹𝐽 is the intersection over all faces containing 𝐹𝐼 and 𝐹𝐽 . First,

we note that

Ψ(𝐹𝐼 ∧ 𝐹𝐽) = Ψ(𝐹𝐼 ∩ 𝐹𝐽) = Ψ(𝐹𝐼∪𝐽) = 𝐺𝐼∪𝐽 = 𝐺𝐼 ∩ 𝐺𝐽 = 𝐺𝐼 ∧ 𝐺𝐽 .

Further, let us denote the faces of Π and𝒩Π by ℱ (Π) and ℱ (𝒩Π) then we have

𝐺𝐼 ∨ 𝐺𝐽 =
⋂

𝐺∈ℱ (𝒩Π)
𝐺𝐼 ,𝐺𝐽⊆𝐺

𝐺 =
⋂

𝐹∈ℱ (Π)
𝐹𝐼 ,𝐹𝐽⊆𝐹

Ψ(𝐹) = Ψ

©«
⋂

𝐹∈ℱ (Π)
𝐹𝐼 ,𝐹𝐽⊆𝐹

𝐹
ª®®®¬ = Ψ(𝐹𝐼 ∨ 𝐹𝐽).

□

In general, the degree of ℎ𝑖 can be higher than the degree of 𝑓𝑖 . For example we will see

later that for linearly constrained policy models Π the resulting state-action frequencies

𝒩Π do not necessarily form a polytope, see Example 3.23. However, in the case that∑
𝑎 𝑎 𝑗(𝑠, 𝑎) = max𝑗

∑
𝑎 𝑎 𝑗(𝑠, 𝑎) for all 𝑗 = 1, . . . , 𝑛 it holds that

(3.22) deg(ℎ𝑖) ≤
∑
𝑠

max

𝑗

∑
𝑎

𝑎
(𝑖)
𝑗
(𝑠, 𝑎) = max

𝑗

∑
𝑠,𝑎

𝑎
(𝑖)
𝑗
(𝑠, 𝑎) = deg( 𝑓𝑖).

Let us now come to the case of partially observable models. By virtue of Theorem 3.18 it

suffices to characterize the set of state policies that can be realized for a given observation

kernel 𝛽.

Definition 3.19 (Effective policies). For an observation policy 𝜋 ∈ Δ𝒪𝒜 we call the state

policy 𝜏 = 𝜋 ◦ 𝛽 ∈ Δ𝒮𝒜 defined via 𝜏(𝑎 |𝑠) B ∑
𝑜∈𝒪 𝜋(𝑎 |𝑜)𝛽(𝑜 |𝑠) the corresponding effective

policy. We denote the set of effective policies by

Δ
𝒮 ,𝛽
𝒜 =

{
𝜋 ◦ 𝛽 : 𝜋 ∈ Δ𝒪𝒜

}
⊆ Δ𝒮𝒜

and refer to it as the effective policy polytope.

Note thatΔ
𝒮 ,𝛽
𝒜 is indeed a polytope since it is the image of the policy polytopeΔ𝒪𝒜 under

the linear mapping 𝜋 ↦→ 𝜋 ◦ 𝛽. Hence, the effective policy polytope has a description by

linear inequalities

(3.23) Δ
𝒮 ,𝛽
𝒜 = {𝜏 ∈ R𝒮×𝒜 : 𝑓𝑖(𝜏) ≥ 𝑐𝑖} ∩ Δ𝒮𝒜

for suitable linear functions 𝑓𝑖(𝜏) =
∑
𝑠,𝑎 𝑏

(𝑖)
𝑠𝑎𝜏𝑠𝑎 .

Corollary 3.20 (State-action frequencies of POMDPs). Let (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) be a POMDP,
𝜇 ∈ Δ𝒮 and 𝛾 ∈ [0, 1] and let Assumption 3.3 hold. Then we have the feasible state-action
frequencies𝒩𝛽 form a polynomially constrained subset of the state-action polytope𝒩 that is com-
binatorially equivalent to the effective policy polytope Δ𝒮 ,𝛽𝒜 . Further, if with the description (3.23)

we have

(3.24) 𝒩𝛽 = {𝜂 ∈ R𝒮×𝒜 : 𝑔𝑖(𝜂) ≥ 0} ∩ 𝒩

for the multi-homogeneous polynomials

(3.25) 𝑔𝑖(𝜂) B
∑
𝑠∈𝑆𝑖

∑
𝑎

𝑏
(𝑖)
𝑠𝑎𝜂𝑠𝑎

∏
𝑠′∈𝑆𝑖\{𝑠}

∑
𝑎′

𝜂𝑠′𝑎′ − 𝑐𝑖
∏
𝑠′∈𝑆𝑖

∑
𝑎′

𝜂𝑠′𝑎′ ,
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where 𝑆𝑖 = {𝑠 ∈ 𝒮 : 𝑏
(𝑖)
𝑠𝑎 ≠ 0 for some 𝑎 ∈ 𝒜}. It holds that

(3.26) deg(𝑔𝑖) ≤ |𝑆𝑖 | =
���{𝑠 ∈ 𝒮 : 𝑏

(𝑖)
𝑠𝑎 ≠ 0 for some 𝑎 ∈ 𝒜

}��� .
Proof. The statement is a direct consequence of the general characterization in Theo-

rem 3.18. To see the statement about the degree we use (3.21) in combination with

max

𝑗

∑
𝑎

𝑎
(𝑖)
𝑗
(𝑠, 𝑎) =

{
1 if 𝑏

(𝑖)
𝑠𝑎 ≠ 0 for some 𝑎 ∈ 𝒜

0 otherwise.

□

According to the preceding corollary, a linear inequality in the state policy polytope

Δ𝒮𝒜 involving actions of 𝑘 different states yields a polynomial inequality of degree 𝑘 in

the set of state-action frequencies𝒩 . In particular, for a linearly constrained policy model

Π ⊆ Δ𝒮𝒜 , where every constraint only addresses a single state, the set of state-action

frequencies induced by these policies will still form a polytope. This shows that this

type of box constraints are well aligned with the algebraic geometric structure of the

problem. The linear constraints arising from partial observability never exhibit this box

type structure – unless the system is equivalent to its fully observable version. This is

because the projection of the effective policy polytopeΔ
𝒮 ,𝛽
𝒜 onto a single state always gives

the entire probability simplex Δ𝒜 , which is never the case, if there is a non trivial linear

constraint concerning only this state.

A polynomial programming formulation of POMDPs. We have seen that the feasible

state-action frequencies of a POMDP – and of a MDP with polynomially constrained

policy class – are described by polynomial inequalities within the state-action polytope.

In particular, this shows that the reward optimization problem in state-action space

maximize ⟨𝑟, 𝜂⟩𝒮×𝒜 subject to 𝜂 ∈ 𝒩𝛽

becomes a linear objective polynomially constrained program. This polynomial opti-

mization problem can be seen as a direct generalization of the dual linear programming

formulation (D-LP) of MDPs to partially observable problems.

3.2.2. Explicit formulas for POMDPs with injective 𝛽. By Corollary 3.20 it suffices

to find the describing linear inequalities of the policy polytope Δ
𝒮 ,𝛽
𝒜 , which is the image of

the policy polytopeΔ𝒪𝒜 under the linear map𝜋 ↦→ 𝜋◦𝛽. Obtaining inequality descriptions

of the images of polytopes under linear maps is a fundamental problem that is non-trivial

in general. It can be approached algorithmically, e.g., by Fourier-Motzkin elimination,

block elimination, vertex approaches, and equality set projection [150]. We characterize

the image of a polytope under a linear map 𝑥 ↦→ 𝐴𝑥 for the special case where the linear

map is injective, corresponding to the case where the matrix 𝐴 has linearly independent

columns. As a polytope is a finite intersection of closed half spaces 𝐻 = {𝑥 : 𝜈𝑇𝑥 ≥ 𝛼}, it

suffices to characterize the image 𝐴𝐻. It holds that

(3.27) 𝐴𝐻 =
{
𝑦 ∈ range𝐴 : 𝜈𝑇𝐴+𝑦 ≥ 𝛼

}
=

{
𝑦 : ((𝐴+)𝑇𝜈)𝑇𝑦 ≥ 𝛼

}
∩ ker(𝐴𝑇)⊥ ,

where 𝐴+ is a pseudoinverse and where we used that for 𝑦 ∈ range𝐴 the injectivity of 𝐴

implies that 𝐴+𝑦 is the unique pre-image of 𝑦.
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Let us now come back to the mapping 𝜋 ↦→ 𝜋 ◦ 𝛽. When the Markov kernels 𝜋 and

𝛽 are expressed as row stochastic matrices, i.e., when 𝜋𝑜𝑎 = 𝜋(𝑎 |𝑜) and 𝛽𝑠𝑜 = 𝛽(𝑜 |𝑠)
the mapping takes the form 𝜋 ↦→ 𝛽𝜋. In vectorized form, this map corresponds to

vec(𝛽𝜋𝐼) = (𝐼𝑇 ⊗ 𝛽)vec(𝜋) [244, 4]. Hence the linear map is represented by the matrix

𝐵 = 𝐼 ⊗ 𝛽. We observe that (𝐼 ⊗ 𝛽)+ = 𝐼 ⊗ 𝛽+ [166, Section 2.6.3]. Notice that 𝐵 = 𝐼 ⊗ 𝛽
has linearly independent columns if and only if 𝛽 does, which leads us to the following

assumption.

Assumption 3.21. The matrix 𝛽 ∈ Δ𝒮𝒪 ⊆ R
𝒮×𝒪

has linearly independent columns.

The assumption above does not imply that the system is fully observable. Recall that

if 𝛽 has linearly independent columns, the Moore-Penrose takes the form 𝛽+ = (𝛽𝑇𝛽)−1𝛽𝑇 .

An interesting special case is when 𝛽 is deterministic but may map several states to the

same observation, which is often referred to as state aggregation. In this case,

(3.28) 𝛽+ = diag(𝑛−1

1
, . . . , 𝑛−1

|𝒪|)𝛽
𝑇 ,

where 𝑛𝑜 denotes the number of states with observation 𝑜. Here, 𝛽+𝑠𝑜 agrees with the

conditional distribution 𝛽(𝑠 |𝑜) with respect to a uniform prior over the states; however,

this is not in general the case since 𝛽+ can have negative entries.

Now we elaborate the implications of our general discussion above for the effective

policy polytope.

Theorem 3.22 (𝐻-description of the effective policy polytope). Let (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) be a
POMDP and let Assumption 3.21 hold. Then it holds that

(3.29) Δ
𝒮 ,𝛽
𝒜 =𝒰 ∩ 𝒞 ∩𝒟 = Δ𝒮𝒜 ∩𝒰 ∩ 𝒞 ,

where 𝒰 = ker(𝐼 ⊗ 𝛽𝑇)⊥ is a subspace, 𝒞 = {𝜏 ∈ R𝒮×𝒜 : 𝛽+𝜏 ≥ 0} is a pointed polyhedral
cone and 𝒟 = {𝜏 ∈ R𝒮×𝒜 :

∑
𝑎(𝛽+𝜏)𝑜𝑎 = 1 for all 𝑜 ∈ 𝒪} an affine subspace. Further, the face

lattices of Δ𝒪𝒜 and Δ
𝒮 ,𝛽
𝒜 are isomorphic.

Proof. Under Assumption 3.3 the mapping Δ𝒪𝒜 → Δ
𝒮 ,𝛽
𝒜 ,𝜋 ↦→ 𝜋 ◦ 𝛽 is linear and bĳective.

In particular, this map induces an isomorphism between the face lattices, see [318].

By the above discussion, if 𝛽 has linearly independent columns, then an inequality

⟨𝜋, 𝜈⟩ ≥ 0 in the policy polytope Δ𝒪𝒜 corresponds to an inequality ⟨𝜏, (𝛽+)𝑇𝜈⟩ ≥ 0 in the

polytope Δ𝒮𝒜 .

We recall the defining linear (in)equalities of the policy polytope Δ𝒪𝒜 , which are given

by

𝜋(𝑎 |𝑜) = ⟨𝛿𝑜 ⊗ 𝛿𝑎 ,𝜋⟩𝒪×𝒜 ≥ 0 for all 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪 and∑
𝑎

𝜋(𝑎 |𝑜) = ⟨𝛿𝑜 ⊗ 1𝒜 ,𝜋⟩𝒪×𝒜 = 1 for all 𝑜 ∈ 𝒪.

Hence, by the general discussion from above, namely by (3.27), it holds that

Δ
𝒮 ,𝛽
𝒜 = ker(𝐼 ⊗ 𝛽𝑇)⊥ ∩ {𝜏 : 𝛽+𝜏 ≥ 0} ∩

{
𝜏 :

∑
𝑎

(𝛽+𝜏)𝑜𝑎 = 1 for all 𝑜 ∈ 𝒪
}
.
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Note that the linear inequalities

∑
𝑎(𝛽+𝜏)𝑜𝑎 = 1 are redundant in Δ𝒮𝒜 . To see this, we note

that 𝛽+1𝒮 = 1𝒪 by the injectivity of 𝛽 and 𝛽1𝒪 = 1𝒮 . Now we can check that∑
𝑎

(𝛽+𝜏)𝑜𝑎 =
∑
𝑎

∑
𝑠

𝛽+𝑜𝑠𝜏𝑠𝑎 =
∑
𝑠

𝛽+𝑜𝑠
∑
𝑎

𝜏𝑠𝑎 =
∑
𝑠

𝛽+𝑜𝑠 = 1.

This together with 𝛽(Δ𝒪𝒜) ⊆ Δ𝒮𝒜 shows that

Δ
𝒮 ,𝛽
𝒜 = Δ𝒮𝒜 ∩ ker(𝐼 ⊗ 𝛽𝑇)⊥ ∩ {𝜏 : 𝛽+𝜏 ≥ 0}.

□

Explicit formulas for the feasible state-action frequencies of POMDPs. Corollary 3.20

provides a description of the set of feasible state-action frequencies as a polynomially con-

strained set. The constraints can be computed explicitly by Theorem 3.22. Indeed, the

linear inequalities describing the cone 𝒞 in Theorem 3.22 are are indexed by 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪
and correspond to polynomial inequalities 𝑝𝑎𝑜(𝜂) ≥ 0 given by

(3.30) 𝑝𝑎𝑜(𝜂) B
∑
𝑠∈𝑆𝑜

(
𝛽+𝑜𝑠𝜂𝑠𝑎

∏
𝑠′∈𝑆𝑜\{𝑠}

∑
𝑎′

𝜂𝑠′𝑎′

)
=

∑
𝑓 : 𝑆𝑜→𝒜

( ∑
𝑠′∈ 𝑓 −1({𝑎})

𝛽+𝑜𝑠′

) ∏
𝑠∈𝑆𝑜

𝜂𝑠 𝑓 (𝑠) ,

where 𝑆𝑜 B {𝑠 ∈ 𝒮 : 𝛽+𝑜𝑠 ≠ 0}. The polynomials depend only on 𝛽 and not on 𝛾, 𝜇
nor 𝛼, and have |𝑆𝑜 | |𝒜| |𝒮𝑜 |−1

monomials of degree |𝑆𝑜 | of the form

∏
𝑠∈𝑆𝑜 𝜂𝑠 𝑓 (𝑠) for some

𝑓 : 𝑆𝑜 → 𝒜. In particular, we can read of the multi-degree, i.e., the vector of the degree

in the individual blocks, of 𝑝𝑎𝑜 with respect to the blocks (𝜂𝑠𝑎)𝑎∈𝒜 , which is given by 1𝑆𝑜 .

Note that in the fully observable case we have |𝑆𝑜 | = 1 for each 𝑜. Hence, each of the

polynomial inequalities has a single term of degree 1. Indeed, in this case the inequalities

are simply 𝜂𝑠𝑎 ≥ 0, for each 𝑎, for each 𝑠. In the case of a deterministic 𝛽, (3.28) implies

that 𝛽+𝑜𝑠 ≠ 0 if and only if 𝛽(𝑜 |𝑠) > 0 and hence we have 𝑆𝑜 = {𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0} in this

case. For each 𝑜, 𝑎, there is an inequality

∑
𝑓 : 𝑆𝑜→𝒜 | 𝑓 −1(𝑎)|∏𝑠∈𝑆𝑜 𝜂𝑠 𝑓 (𝑠) ≥ 0 of degree |𝑆𝑜 |

equal to the number of states that are compatible with 𝑜.

Analogously to the defining inequalities, we can compute the defining polynomial

equalities in the following way, which arise from the linear equations defining 𝒰 in

Theorem 3.22. These linear equations occur when ker(𝐼⊗𝛽𝑇) ≠ {0} is non trivial. Note that

𝐼⊗𝛽𝑇 is injective if and only if 𝛽𝑇 is injective, which is again equivalent to 𝛽 being surjective.

First, we need to compute a basis {𝑏 𝑗} 𝑗∈𝐽 of {𝛽𝜋 : 𝜋 ∈ R𝒪×𝒜}⊥ = ker(𝐼 ⊗ 𝛽𝑇) ⊆ R𝒮×𝒜 ,

which can easily be done using the Gram-Schmidt process. Note that the defining linear

equalities of the effective policy polytope within in the state policy polytope Δ𝒮𝒜 are given

by ⟨𝑏 𝑗 , 𝜏⟩𝒮×𝒜 = 0. Hence, by Theorem 3.18 the corresponding polynomial equality inside

the state-action polytope𝒩 is given by 𝑞 𝑗(𝜂) = 0, where

(3.31) 𝑞 𝑗(𝜂) B
∑
𝑠∈𝑆𝑗

∑
𝑎∈𝒜

𝑏
𝑗
𝑠𝑎𝜂𝑠𝑎

∏
𝑠′∈𝑆 𝑗\{𝑠}

∑
𝑎′∈𝒜

𝜂𝑠′𝑎′ ,

where 𝑆 𝑗 B {𝑠 ∈ 𝒮 : 𝑏
𝑗
𝑠𝑎 ≠ 0 for some 𝑎 ∈ 𝒜}.

A complete description of the set 𝒩𝛽
via (in)equalities follows from the description

of the state-action polytope 𝒩 via linear (in)equalities given in Theorem (3.5). In Sec-

tion 3.3 we discuss how the degree of these polynomials controls the complexity of the

optimization problem.
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Example 3.23 (Crying baby example continued). We revisit our running example and

compute the polynomial constraints defining the feasible state-action frequencies of the

POMDP within the state-action polytope for which we have given the defining inequalities

in (3.9). In the case of the crying baby example the observation kernel takes is given by

𝛽 =

( 𝑜1 𝑜2

𝑠1 1 0

𝑠2 0.5 0.5

)
∈ Δ𝒮𝒪 ,

which is invertible with inverse

𝛽−1 =

(
1 0

−1 2

)
.

Let us first compute the effective policy polytope for which we apply Theorem 3.22. Recall

that𝒰 = ker(𝐼 ⊗ 𝛽𝑇) = {0} if 𝛽 is surjective and hence the effective policies are given by

Δ
𝒮 ,𝛽
𝒜 = {𝜏 ∈ Δ𝒮𝒜 : 𝛽−1𝜏 ≥ 0} =

{
𝜏 ∈ Δ𝒮𝒜 :

−𝜏(𝑎1 |𝑠1) + 2𝜏(𝑎1 |𝑠2) ≥ 0

𝜏(𝑎1 |𝑠1) − 2𝜏(𝑎1 |𝑠2) + 1 ≥ 0

}
,

where we made the substitution 𝜏(𝑎2 |𝑠) = 1 − 𝜏(𝑎1 |𝑠), see also Figure 3.2. Hence, with

the observation kernel 𝛽 we have the restriction of selecting an action 𝑎 in state 𝑠2 at least

with the probability 𝜏(𝑎 |𝑠1)/2 since with probability 1/2 we will hear the baby crying and

will act like we the baby was hungry.

Let us now turn towards the feasible state-action frequencies. Again, there are no ad-

ditional polynomial equalities compared to the fully observable case but only polynomial

inequalities 𝑝𝑎𝑜(𝜂) ≥ 0 with 𝑝𝑎𝑜 given in (3.30). Note that 𝑝𝑎𝑜2
(𝜂) = 𝜂𝑠2𝑎 and hence the

condition 𝑝𝑎𝑜2
(𝜂) ≥ 0 is satisfied for 𝑎 ∈ 𝒜 and any state-action frequency 𝜂 ∈ 𝒩 ⊆ Δ𝒮×𝒜

of the underlying MDP. The two remaining polynomials are given by

𝑝𝑎1𝑜1
(𝜂) =

∑
𝑠∈𝒮

𝛽−1

𝑜1𝑠
𝜂𝑠𝑎

∏
𝑠′∈𝒮\{𝑠}

∑
𝑎′∈𝒜

𝜂𝑠′𝑎′ for 𝑎 ∈ 𝒜.

Hence, the feasible state-action frequencies are given by

𝒩𝛽 = 𝒩 ∩
{
𝜂 ∈ R𝒮×𝒜 :

𝜂𝑠1𝑎1
𝜂𝑠2𝑎1

− 𝜂𝑠1𝑎1
𝜂𝑠2𝑎2

+ 2𝜂𝑠1𝑎2
𝜂𝑠2𝑎1

≥ 0

2𝜂𝑠1𝑎1
𝜂𝑠2𝑎2

− 𝜂𝑠1𝑎2
𝜂𝑠2𝑎1

+ 𝜂𝑠1𝑎2
𝜂𝑠2𝑎2

≥ 0

}
,(3.32)

see also Figure 3.2. Together with the linear conditions describing the state-action poly-

tope given in (3.9) the reward optimization problem in state-action space (ROP-SA) of the

POMDP takes the form

maximize −10𝜂𝑠1𝑎2
− 𝜂𝑠2𝑎1

subject to



20𝜂𝑠1𝑎1
+ 10𝜂𝑠1𝑎2

− 𝜂𝑠2𝑎2
− 10𝜇𝑠1

= 0

−10𝜂𝑠1𝑎1
+ 10𝜂𝑠2𝑎1

+ 11𝜂𝑠2𝑎2
− 10𝜇𝑠2

= 0

𝜂𝑠1𝑎1
𝜂𝑠2𝑎1

− 𝜂𝑠1𝑎1
𝜂𝑠2𝑎2

+ 2𝜂𝑠1𝑎2
𝜂𝑠2𝑎1

≥ 0

2𝜂𝑠1𝑎1
𝜂𝑠2𝑎2

− 𝜂𝑠1𝑎2
𝜂𝑠2𝑎1

+ 𝜂𝑠1𝑎2
𝜂𝑠2𝑎2

≥ 0

𝜂𝑠1𝑎1
, 𝜂𝑠1𝑎2

, 𝜂𝑠2𝑎1
, 𝜂𝑠2𝑎2

≥ 0.

This polynomial program can be seen as an extension of the dual linear program (D-LP)

describing reward optimization in the fully observable case, which is given by (3.10) in

this specific example.
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𝒜

𝜏𝜋 Δ𝒮×𝒜

𝒩𝛽 𝒩

𝜂𝜋
𝜋 ↦→𝜋◦𝛽
−−−−−−→

linear

−−−−−→
rational

Observation policies

𝜋(𝑎1 |𝑜1)

𝜋
(𝑎

1
|𝑜

2
)

State policies

𝜏(𝑎1 |𝑠1)

𝜏(
𝑎 1
|𝑠 2
)

State-action frequencies

Figure 3.2. Shown are on the left the observation policies Δ𝒪𝒜 , in the mid-

dle the effective policy polytope Δ
𝒮 ,𝛽
𝒜 inside the polytope of state policies

Δ𝒮𝒜 and on the right the corresponding state-action feasible state-action

frequencies 𝒩𝛽
inside the state-action polytope 𝒩 inside the probability

simplex Δ𝒮×𝒜 , which is a tetrahedron in this case.

3.2.3. State-action frequencies for deterministic observations. Here, we study de-

terministic observations, i.e., the case where the observation kernel 𝛽 ∈ Δ𝒮𝒪 ∩ {0, 1} has

binary entries. This case is often referred to as state-aggregation and is a classic way to

reduce the size of the state space of MDPs [42, 241, 173]. If 𝛽 has no zero column – a zero

column would correspond to an observation that is observed with zero probability – it

satisfies the rank Assumption 3.21. We first elaborate the implications of our general anal-

ysis for this important case. Then we provide an alternative characterization describing

the feasible state-action frequencies via products of varieties of rank one matrices.

In the case of deterministic observations 𝛽 corresponds to a mapping 𝑔 = 𝑔𝛽 : 𝒮 → 𝒪
satisfying 𝛽(𝑜 |𝑠) = 𝛿𝑜𝑔(𝑠) and we can compute all polynomial constraints in closed form.

Let us again write 𝑆𝑜 B {𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0} = 𝑔−1

𝛽 ({𝑜}) ⊆ 𝒮, then by Theorem 3.22 a

policy 𝜏 ∈ Δ𝒮𝒜 belongs to the effective policy polytope Δ
𝒮 ,𝛽
𝒜 if and only if

𝜏(𝑎 |𝑠1) = 𝜏(𝑎 |𝑠2) for all 𝑠1 , 𝑠2 ∈ 𝑆𝑜 , 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪.(3.33)

Note that this can be encoded in

∑
𝑜 |𝒜|(|𝑆𝑜 | − 1) = |𝒜|(|𝒮| − |𝒪|) linear equations; indeed

if we fix 𝑠𝑜 ∈ 𝑆𝑜 , then (3.33) is equivalent to

𝜏(𝑎 |𝑠) − 𝜏(𝑎 |𝑠𝑜) = 0 for all 𝑠 ∈ 𝑆𝑜 \ {𝑠𝑜}, 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪.(3.34)

By Corollary 3.20 for 𝜂 ∈ 𝒩 it is equivalent to lie in𝒩𝛽
or to satisfy

𝑝𝑜𝑠𝑎(𝜂) B 𝜂𝑠𝑎
∑
𝑎′

𝜂𝑠𝑜 𝑎′ − 𝜂𝑠𝑜 𝑎
∑
𝑎′

𝜂𝑠𝑎′ = 0 for all 𝑠 ∈ 𝑆𝑜 \ {𝑠𝑜}, 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪.(3.35)

Note that in this case, there are no polynomial inequalities; this can also be seen from (3.28)

and (3.30). We collect this finding.

Corollary 3.24. For deterministic observation 𝛽, fix an arbitrary action 𝑎𝑜 ∈ 𝒜 and an arbitrary
state 𝑠𝑜 ∈ 𝑆𝑜 = {𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0} for every 𝑜 ∈ 𝒪. The set of feasible state-action frequencies
𝒩𝛽 can be described as the intersection𝒩𝛽 = 𝒩 ∩𝒴, where

𝒴 B
{
𝜂 ∈ R𝒮×𝒜 : 𝑝𝑜𝑠𝑎(𝜂) = 0 for all 𝑜 ∈ 𝒪 , 𝑎 ∈ 𝒜 \ {𝑎𝑜}, 𝑠 ∈ 𝑆𝑜 \ {𝑠𝑜}

}
,
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and the polynomials 𝑝𝑜𝑠𝑎 are given in (3.35). Further, 𝒴 is a complete intersection of these
polynomials, i.e., codim(𝒴) = |𝒜|(|𝒮| − |𝒪|).

Where the corollary above is a consequence of the general theory established before

we now provide a new description that is specific to deterministic observations.

Theorem 3.25 (Feasible state-action frequencies). Let the ergodicity Assumption 2.14 and the
positivity Assumption 3.3 hold. For deterministic observation 𝛽 the set of feasible state-action
frequencies 𝒩𝛽 is the intersection 𝒩𝛽 = 𝒩 ∩ 𝒳, see Theorem 3.5, and 𝒳 is the product of real
determinantal varieties

𝒳 =

{
𝜂 ∈ R𝒮×𝐴 : 𝜂𝑠𝑎𝜂𝑠′𝑎′ − 𝜂𝑠𝑎′𝜂𝑠′𝑎 = 0 ∀𝑎, 𝑎′ ∈ 𝒜 and 𝑠, 𝑠′ ∈ 𝒮 with 𝑔𝛽(𝑠) = 𝑔𝛽(𝑠′)

}
.

Proof. In the light of Corollary 3.24 it suffices to show 𝒳 ∩ 𝒩 = 𝒴 ∩ 𝒩 . Since 𝑝𝑜𝑠𝑎 is a

linear combination of 2 × 2 minors, we have the inclusion 𝒳 ⊆ 𝒴. On the other hand,

equation (3.35) together with the positivity Assumption 3.3 implies the linear dependence

of the two vectors

(𝜂𝑠𝑎)𝑎 , (𝜂𝑠𝑜 𝑎)𝑎 ∈ R𝒜

for every observation 𝑜 and state 𝑠 ∈ 𝑆𝑜 . Consequently, every 2× 2 minor in the definition

of𝒳 vanishes on𝒴∩𝒩 . This shows the desired inclusion𝒴∩𝒩 ⊆ 𝒳∩𝒩 , which finishes

the proof. □

The state-action polytope𝒩 is given by the intersection𝒩 = Δ𝒮×𝒜∩ℒ, see Theorem 3.5.

Hence, the variety ℒ ∩ 𝒳 encodes the polynomial equalities defining 𝒩𝛽
and we call

ℒ ∩𝒳 the state-aggregation variety, where ℒ is the affine space describing the state-action

polytope, see Theorem 3.5. Note that 𝒳 is determined by the condition that for every

observation 𝑜 the 𝑑𝑜 × 𝑛𝒜 submatrix (𝜂𝑠𝑎)𝑠∈𝑆𝑜 , 𝑎∈𝒜 of 𝜂, consisting of all entries 𝜂𝑠𝑎 with

𝑔𝛽(𝑠) = 𝑜. Hence, 𝒳 is equal to the product

∏
𝑜∈𝒪𝒟

𝑑𝑜×𝑛𝒜
1

of determinantal varieties of

rank one matrices of size 𝑑𝑜 × 𝑛𝒜 .

3.2.4. State-action geometry of multi-agent systems. In an MDP only a single agent

makes a decision, however, in many settings multiple agents simultaneously act in an

environment, which is modelled by multi-agent POMDPs, which are sometimes also

referred to as decentralized POMDPs [224, 225]. These models lie at the heart of multi-

agent reinforcement where in particular the communication between agents has received

huge attention lately. Here, we study the case of decentralized policies, i.e., where

groups of agents make their decision collectively but independently from all other groups.

However, more general (conditional) independence structures can be studied.

Definition 3.26 (Multi-agent MDPs and decentralized policies). We call an MDP (𝒮 ,𝒜 , 𝛼, 𝑟)
a multi-agent MDP (MA-MDP) with 𝑛 agents, if the action space factorizes into 𝑛 according

to𝒜 =
∏𝑛

𝑖=1
𝒜𝑖 . Consider a partition (𝜈𝑖)𝑘𝑖=1

of {1, . . . , 𝑛}, i.e., a collection of disjoint sub-

sets 𝜈𝑖 ⊆ {1, . . . , 𝑛} such that

⋃𝑘
𝑖=1

𝜈𝑖 = {1, . . . , 𝑛}. For 𝑖 = 1, . . . , 𝑘 we set𝒜𝜈𝑖 B
∏

𝑗∈𝜈𝑖 𝒜 𝑗

and 𝑎𝜈𝑖 B (𝑎 𝑗)𝑗∈𝜈𝑖 for 𝑎 = (𝑎1 , . . . , 𝑎𝑛) ∈ 𝒜. We call a policy 𝜋 ∈ Δ𝒮𝒜 decentralized with

respect to (𝜈𝑖)𝑖=1,...,𝑘 if there are Markov kernels 𝜋𝑖 ∈ Δ𝒮𝒜𝜈𝑖
such that

(3.36) 𝜋(𝑎 |𝑠) =
𝑘∏
𝑖=1

𝜋𝑖(𝑎𝜈𝑖 |𝑠) for all 𝑎 ∈ 𝒜 , 𝑠 ∈ 𝒮.

If 𝜈𝑖 = {𝑖} then we simply call such a policy decentralized.
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Note that a factorization of the form (3.36) exists if and only if the actions 𝑎𝜈𝑖 are

made independently from another. We also introduce partially observable multi-agent

problems.

Definition 3.27 (Multi-agent POMDPs and decentralized policies). We call a POMDP

(𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) a multi-agent POMDP (MA-POMDP) with 𝑛 agents if the action and

observation spaces factorize into 𝑛 factors, i.e., 𝒜 =
∏𝑛

𝑖=1
𝒜𝑖 and 𝒪 =

∏𝑛
𝑖=1
𝒪𝑖 . For

a partition (𝜈𝑖)𝑘𝑖=1
of {1, . . . , 𝑛} we call a policy 𝜋 ∈ Δ𝒪𝒜 decentralized with respect to

(𝜈𝑖)𝑖=1,...,𝑘 if there are policies 𝜋𝑖 ∈ Δ
𝒪𝜈𝑖
𝒜𝜈𝑖

such that

(3.37) 𝜋(𝑎 |𝑜) =
𝑘∏
𝑖=1

𝜋𝑖(𝑎𝜈𝑖 |𝑜𝜈𝑖 ) for all 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪 ,

where 𝑎 = (𝑎1 , . . . , 𝑎𝑛), 𝑜 = (𝑜1 , . . . , 𝑜𝑛) and 𝑎𝜈𝑖 B (𝑎 𝑗)𝑗∈𝜈𝑖 , 𝑜𝜈𝑖 B (𝑜 𝑗)𝑗∈𝜈𝑖 . If 𝜈𝑖 = {𝑖} then

we simply call such a policy decentralized.

We denote the set of decentralized policies with Δ
𝒪 ,dec

𝒜 ⊆ Δ𝒪𝒜 and similarly we write

Δ
𝒮 ,dec

𝒜 ⊆ Δ𝒮𝒜 for the decentralized policies in a multi-agent MDP. We denote the corre-

sponding state-action frequencies by

𝒩𝛽,dec =

{
𝜂𝜋 : 𝜋 ∈ Δ𝒪 ,dec

𝒜

}
⊆ 𝒩𝛽

and𝒩dec =

{
𝜂𝜋 : 𝜋 ∈ Δ𝒮 ,dec

𝒜

}
⊆ 𝒩 .

In the following we provide characterizations of the sets𝒩𝛽,dec
and𝒩dec

.

Notation. For a subset 𝐼 ⊆ {1, . . . , 𝑛} and 𝑎 ∈ 𝒜 we use the notation 𝑎𝐼 B (𝑎𝑖)𝑖∈𝐼 as

well as𝒜𝐼 B
∏

𝑖∈𝐼𝒜𝑖 . We denote the marginal policies by

(3.38) 𝜋𝐼 ,+(𝑎𝐼 |𝑜) B
∑̃
𝑎∈𝒜
�̃�𝐼=𝑎𝐼

𝜋(𝑎 |𝑜) for all 𝑎𝐼 ∈ 𝒜𝐼 , 𝑜 ∈ 𝒪.

If 𝐼 = {𝑖} we write 𝑎𝑖 and 𝜋𝑖 ,+ and for 𝐼 = {1, . . . , 𝑛} \ {𝑖} we write 𝑎−𝑖 and 𝜋−𝑖 ,+ for 𝑎𝐼
and 𝜋𝐼 ,+ respectively. We adopt a similar notation for multiple index sets, e.g., for disjoint

𝐼 , 𝐽 ⊆ {1, . . . , 𝑛} we write 𝜋𝐼 ,𝐽 ,+ for the corresponding marginal policy.

In a multi-agent problem can be captured by the following sequence of mappings

(3.39)

∏𝑘
𝑖=1

Δ
𝒪𝜈𝑖
𝒜𝜈𝑖

→ Δ𝒪𝒜 → Δ𝒮𝒜 → 𝒩 → R

(𝜋𝑖)𝑖=1,...,𝑘 ↦→ 𝜋 ↦→ 𝜏 ↦→ 𝜂 ↦→ 𝑅(𝜋).

For a decentralized policy 𝜋 ∈ Δ𝒪𝒜 it holds that 𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜) = 𝜋𝑖(𝑎𝜈𝑖 |𝑜𝜈𝑖 ), which shows

in particular that the parametrization (𝜋𝑖) ↦→ 𝜋 of decentralized policies is a Lipschitz

homeomorphism. In particular this implies that the dimension of decentralized policies

is given by dim(∏𝑘
𝑖=1

Δ
𝒜𝜈𝑖
𝜈𝑖 ) Further, this yields that

(3.40) 𝜋(𝑎 |𝑜) =
𝑘∏
𝑖=1

𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜) for all 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪.

Hence, since for a decentralized policy 𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜) does only depend on 𝑜𝜈𝑖 we can choose

𝜋𝑖(𝑎𝜈𝑖 |𝑜𝜈𝑖 ) B 𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜′) for some 𝑜′ ∈ 𝒪 with 𝑜′𝜈𝑖 = 𝑜𝜈𝑖 . Note however that (3.40) alone

does not imply that 𝜋 is decentralized. However, if in addition

(3.41) 𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜) = 𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜′) for all 𝑜, 𝑜′ ∈ 𝒪 with 𝑜𝜈𝑖 = 𝑜′𝜈𝑖
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is satisfied then surely 𝜋 is decentralized with 𝜋𝑖 = 𝜋𝜈𝑖 ,+. Overall, this implies that a poliy

𝜋 ∈ Δ𝒪𝒜 is decentralized if and only if it satisfies (3.40) and (3.41).

The fully observable case. For a decentralized policy 𝜋 ∈ Δ𝒮𝒜 , all agents indexed by 𝜈𝑖
select their actions independently from all other groups 𝜈𝑗 of agents. Such independence

relationships can be described by the vanishing of 2 × 2 minors of marginals of the

probability distribution [275]. In our case this yields the following characterization.

Proposition 3.28 (Characterization of decentralized policies). Consider a multi-agent MDP
(𝒮 ,𝒜 , 𝛼, 𝑟)with 𝑛 agents and a partition (𝜈𝑖)𝑖=1,...,𝑘 of {1, . . . , 𝑛}. Then 𝜋 ∈ Δ𝒮𝒜 is decentralized
with respect to (𝜈𝑖)𝑖=1,...,𝑘 if and only if

(3.42) 𝜋𝐼 ,𝐽 ,+(𝑎𝐼 , 𝑎𝐽 |𝑠)𝜋𝐼 ,𝐽 ,+(𝑎′𝐼 , 𝑎
′
𝐽 |𝑠) − 𝜋𝐼 ,𝐽 ,+(𝑎𝐼 , 𝑎

′
𝐽 |𝑠)𝜋𝐼 ,𝐽 ,+(𝑎𝐼 , 𝑎

′
𝐽 |𝑠) = 0

for all 𝑎𝐼 , 𝑎′𝐼 ∈ 𝒜𝐼 , 𝑎𝐽 , 𝑎′𝐽 ∈ 𝒜𝐽 , 𝑠 ∈ 𝒮 and 𝐼 , 𝐽 ∈ {𝜈𝑖}𝑖=1,...,𝑛 .
For the state-action frequencies we use an analogue notation to policies, e.g.,

𝜂𝐼(𝑠, 𝑎𝐼) =
∑̃
𝑎∈𝒜
�̃�𝐼=𝑎𝐼

𝜂(𝑠, 𝑎)

and analogously for multiple index sets.

Theorem 3.29 (State-action frequencies of decentralized policies in a MDP). Consider a
multi-agent MDP (𝒮 ,𝒜 , 𝛼, 𝑟) with 𝑛 agents and a partition (𝜈𝑖)𝑖=1,...,𝑘 of {1, . . . , 𝑛} and let the
positivity Assumption 3.3 hold. Then 𝜂 ∈ 𝒩 is the state-action frequency of a decentralized policy
if and only if

(3.43) 𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎𝐼 , 𝑎𝐽) · 𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎′𝐼 , 𝑎
′
𝐽) − 𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎𝐼 , 𝑎

′
𝐽) · 𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎

′
𝐼 , 𝑎𝐽) = 0

for all 𝑎, 𝑎′ ∈ 𝒜, 𝑠 ∈ 𝒮, 𝐼 , 𝐽 ∈ (𝜈𝑖)𝑖=1,...,𝑛 . Hence, we have𝒩dec = 𝒳 ∩𝒩 , where

(3.44) 𝒳 =

{
𝜂 ∈ R𝒮×𝒜 : (3.43) holds for all 𝑎, 𝑎′ ∈ 𝒜 , 𝑠 ∈ 𝒮 , 𝐼 , 𝐽 ∈ (𝜈𝑖)𝑖=1,...,𝑛

}
.

Proof. The condition (3.42) characterizes decentralization in fully observable multi agent

problems. Note that this is homogeneous polynomial condition that only addresses

𝜋(·|𝑠). Computing the corresponding equations in state-action space using the substitu-

tion 𝜋(𝑎 |𝑠) = 𝜂(𝑠, 𝑎)/𝜌(𝑠) and multiplying the resulting equation by 𝜌(𝑠)2 > 0 yields the

claim. □

We have seen that the state-action frequencies of decentralized policies are described

by the same polynomial equations as the decentralized policies, in particular, they are

also of degree 2. This is a due to the homogeneity of the constraints, see also (3.22). Note

that the dimension of the set of decentralized policies and under Assumption 3.3 also of

the corresponding state-action frequencies is given by

(3.45) dim

(
𝑘∏
𝑖=1

Δ𝒮𝒜𝜈𝑖

)
=

𝑘∑
𝑖=1

|𝒮|(|𝒜𝜈𝑖 | − 1) =
𝑘∑
𝑖=1

|𝒮| ©«
∏
𝑗∈𝜈𝑖
|𝒜 𝑗 | − 1

ª®¬ .
If all agents share the same action space𝒜𝑖 = 𝐴 then the dimension is given by

(3.46)

𝑘∑
𝑖=1

|𝒮|
(
|𝐴| |𝜈𝑖 | − 1

)
.
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In particular, in the two extreme cases of centralized policies, i.e., 𝑘 = 1 and decentralized

policies, i.e., 𝑘 = 𝑛 we obtain the dimensions |𝒮| (|𝐴|𝑛 − 1) and 𝑛 |𝒮| (|𝐴| − 1). Note that

the dimension grows exponentially in the number of agents if they act centralized and

only linearly when they act in a decentralized way.

Characterization for multi-agent POMDPs. For the partially observable case we can

obtain an analogous description for the feasible state-action frequencies𝒩𝛽,dec
.

Proposition 3.30 (Characterization of decentralized policies). Consider a multi-agent POMDP
(𝒮 ,𝒜 ,𝒪 , 𝛼, 𝛽, 𝑟) with 𝑛 agents and a partition (𝜈𝑖)𝑖=1,...,𝑘 of {1, . . . , 𝑛}. Then 𝜋 ∈ Δ𝒪𝒜 is decen-
tralized with respect to (𝜈𝑖)𝑖=1,...,𝑘 if and only if

(3.47) 𝜋𝐼 ,𝐽 ,+(𝑎𝐼 , 𝑎𝐽 |𝑜)𝜋𝐼 ,𝐽 ,+(𝑎′𝐼 , 𝑎
′
𝐽 |𝑜) − 𝜋𝐼 ,𝐽 ,+(𝑎𝐼 , 𝑎

′
𝐽 |𝑜)𝜋𝐼 ,𝐽 ,+(𝑎𝐼 , 𝑎

′
𝐽 |𝑜) = 0

for all 𝑎𝐼 , 𝑎′𝐼 ∈ 𝒜𝐼 , 𝑎𝐽 , 𝑎′𝐽 ∈ 𝒜𝐽 , 𝑜 ∈ 𝒮 and 𝐼 , 𝐽 ∈ {𝜈𝑖}𝑖=1,...,𝑛 and

𝜋𝐼 ,+(𝑎𝐼 |𝑜) = 𝜋𝐼 ,+(𝑎𝐼 |𝑜′)(3.48)

for all 𝑎𝐼 ∈ 𝒜𝐼 and 𝑜, 𝑜′ ∈ 𝒪 with 𝑜𝐼 = 𝑜′
𝐼

for all 𝐼 ∈ {𝜈𝑖}𝑖=1,...,𝑛 .
Proof. It is immediate to check that (3.47) and (3.48) hold for decentralized policies.

Let us now assume that (3.47) and (3.48) hold. It is well known that (3.47) is equivalent

to the independence

𝜋(𝑎 |𝑜) =
𝑘∏
𝑖=1

𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜)

for all 𝑎 ∈ 𝒜, 𝑜 ∈ 𝒪, see for example [275]. Together with (3.48) it is clear that a

factorization of the form (3.37) can be obtained via 𝜋𝜈𝑖 (𝑎𝜈𝑖 |𝑜𝜈𝑖 ) B 𝜋𝜈𝑖 ,+(𝑎𝜈𝑖 |𝑜′) for some

𝑜′ ∈ 𝒪 with 𝑜′𝜈𝑖 = 𝑜𝜈𝑖 . □

Theorem 3.31 (State-action frequencies of decentralized policies). Consider a multi-agent
POMDP (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) with 𝑛 agents and a partition (𝜈𝑖)𝑖=1,...,𝑘 of {1, . . . , 𝑛} and let the
positivity Assumption 3.3 and the rank Assumption 3.21 hold. Then 𝜂 ∈ 𝒩𝛽 is the state-action
frequency of a decentralized policy if and only if

(3.49) 𝑝𝑜𝑎𝐼 ,𝑎𝐽 (𝜂)𝑝
𝑜
𝑎′
𝐼
,𝑎′
𝐽
(𝜂) − 𝑝𝑜

𝑎𝐼 ,𝑎
′
𝐽
(𝜂)𝑝𝑜

𝑎′
𝐼
,𝑎𝐽
(𝜂) = 0

for all 𝑎, 𝑎′ ∈ 𝒜, 𝑜 ∈ 𝒪, 𝐼 , 𝐽 ∈ (𝜈𝑖)𝑖=1,...,𝑛 and

(3.50) 𝑞𝑜,𝑜
′

𝑎𝐼 (𝜂) = 𝑞𝑜
′,𝑜
𝑎𝐼 (𝜂)

for all 𝑎𝐼 ∈ 𝒜𝐼 , 𝑜, 𝑜′ ∈ 𝒪 with 𝑜𝐼 = 𝑜′
𝐼

and 𝐼 ∈ (𝜈𝑖)𝑖=1,...,𝑛 , where

(3.51) 𝑝𝑜𝑎𝐼 ,𝑎𝐽 (𝜂) =
∑
𝑎′∈𝒜

𝑎′
𝐼
=𝑎𝐼 ,𝑎

′
𝐽
=𝑎𝐽

∑
𝑠∈𝒮

𝛽+𝑜𝑠𝜂𝑠𝑎′
©«

∏
𝑠′∈𝑆𝑜\{𝑠}

∑̃
𝑎∈𝒜

𝜂𝑠′ �̃�
ª®¬

and

(3.52) 𝑞𝑜,𝑜
′

𝑎𝐼 (𝜂) =
∑
𝑎′∈𝒜
𝑎′
𝐼
=𝑎𝐼

∑
𝑠∈𝒮

𝛽+𝑜𝑠𝜂𝑠𝑎′ ·
∏

𝑠′∈(𝑆𝑜∪𝑆𝑜′)\{𝑠}

∑̃
𝑎∈𝒜

𝜂𝑠′ �̃� ,
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where 𝑆𝑜 = {𝑠 ∈ 𝒮 : 𝛽+𝑜𝑠 ≠ 0}. Hence, we have𝒩𝛽,dec = 𝒳 ∩𝒩𝛽, where

𝒳 =

{
𝜂 ∈ R𝒮×𝒜 :

(3.49) holds for all 𝑎, 𝑎′ ∈ 𝒜 , 𝑜 ∈ 𝒪 , 𝐼 , 𝐽 ∈ (𝜈𝑖)𝑖=1,...,𝑛

(3.50) holds for all 𝑎𝐼 ∈ 𝒜𝐼 , 𝑜, 𝑜
′ ∈ 𝒪 with 𝑜𝐼 = 𝑜′

𝐼
, 𝐼 ∈ (𝜈𝑖)𝑖=1,...,𝑛

}
.

Proof. Just like in the case of single agent partially observable Markov decision processes

we can compute the policy 𝜋 ∈ Δ𝒪𝒜 from the state-action frequency 𝜂 ∈ 𝒩 according to

(3.53) 𝜋(𝑎 |𝑜) =
∑
𝑠∈𝒮

𝛽+𝑜𝑠 ·
𝜂𝑠𝑎∑

𝑎′∈𝒜 𝜂𝑠𝑎′
,

where 𝛽+ denotes a pseudoinverse of the observation kernel 𝛽 ∈ Δ𝒮𝒪 ⊆ R
𝒮×𝒪

. Substituting

𝜋 in (3.47) and (3.48) according to (3.53) and multiplying the resulting rational equations

by the suitable marginals

∑
𝑎′∈𝒜 𝜂𝑠𝑎′ to obtain a polynomial condition we obtain (3.49)

and (3.50). □

In contrast to the fully observable case the degree of the defining equations (3.43) in

state-action space do not necessarily agree with the degree of the defining equations (3.47)

and (3.48) in policy space. Indeed, we have deg(𝑝𝑜𝑎𝐼 ,𝑎𝐽 ) ≤ |𝑆𝑜 | and deg(𝑞𝑜,𝑜
′

𝑎𝐼 ) ≤ |𝑆𝑜 ∪ 𝑆𝑜′ |
and hence the degree of (3.49) is upper bounded by 2|𝑆𝑜 | where the degree of (3.50) is

upper bounded by |𝑆𝑜 ∪ 𝑆𝑜′ |.
Like in the fully observable case we can compute the dimension of the state-action

frequencies of the decentralized policies

(3.54) dim

(
𝑘∏
𝑖=1

Δ
𝒪𝜈𝑖
𝒜𝜈𝑖

)
=

𝑘∑
𝑖=1

∏
𝑗∈𝜈𝑖
|𝒪𝑗 | ©«

∏
𝑗∈𝜈𝑖
|𝒜 𝑗 | − 1

ª®¬ .
In the case that all agents share the same action and observation space, i.e., 𝒜𝑖 = 𝐴 and

𝒪𝑖 = 𝑂 for all 𝑖 = 1, . . . , 𝑘 the dimension is given by

(3.55)

𝑘∑
𝑖=1

|𝑂 | |𝜈𝑖 |
(
|𝐴| |𝜈𝑖 | − 1

)
.

In particular, in the two extreme cases of centralized and decentralized policies the re-

spective dimension given by |𝑂 |𝑛 (|𝐴|𝑛 − 1) and 𝑛 |𝑂 | (|𝐴| − 1).
Proposition 3.32 (Effective decentralized policies are decentralized). Consider a multi-
agent POMDP (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) and let 𝜋 ∈ Δ𝒪𝒜 be decentralized with respect to (𝜈𝑖)𝑖=1,...,𝑘

for a partition (𝜈𝑖)𝑖=1,...,𝑘 of {1, . . . , 𝑛}. Then 𝜏 = 𝜋 ◦ 𝛽 ∈ Δ𝒮𝒜 is decentralized with respect to
(𝜈𝑖)𝑖=1,...,𝑘 . In particular, we have𝒩𝛽,dec ⊆ 𝒩dec.
Proof. We perceive the policy 𝜏 as a graphical model and borrow from the theory of

conditional independence for graphical models to show that {𝜈𝑖} are independent under

𝜏(·|𝑠) for every 𝑠 ∈ 𝒮. Consider the case of complete decentralization, i.e., 𝜈𝑖 = {𝑖}. Then

for 𝜇 ∈ int(Δ𝒮) the decentralized policy 𝜋 induces a joint distribution 𝜉 ∈ Δ𝒮×𝒪×𝒜 on

𝒮 × 𝒪 × 𝒜 according to 𝜉(𝑠, 𝑜, 𝑎) = 𝜇(𝑠)𝛽(𝑜 |𝑠)∏𝑛
𝑖=1

𝜋𝑖(𝑎𝑖 |𝑜𝑖). This distribution is Markov

with respect to the graph shown in Figure 3.3. Then 𝑎𝑖 and 𝑎 𝑗 are d-separated given 𝑠 and

hence 𝑎𝑖 and 𝑎 𝑗 are independent given 𝑠, see [158, Theorem 3.3]. Note that a factorization

of the form (3.36) exists if and only if the 𝑖-th and 𝑗-th action are taken independently,

which shows that 𝜏 is decentralized. For general partitions the argument is analogue. □
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𝑜𝑛
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𝑎𝑛

Figure 3.3. Graph describing the decentralized policy.

Factored jointly fully observable models. Finally, we consider the special case of

multi-agent POMDPs where we assume that also the state space factorizes according to

𝒮 =
∏𝑛

𝑖=1
𝒮𝑖 . We call such problems factored. For example, 𝑠𝑖 ∈ 𝒮𝑖 could encode the

position of the 𝑖-th agent. We call a factored multi-agent POMDP jointly fully observable if

the 𝑖-th agent observes its own state, i.e, if 𝒪 = 𝒮 and 𝛽 = 𝐼.

Note that in the context of multi-agent POMDPs this is not equivalent to the corre-

sponding multi-agent MDP since for a decentralized policy in the sense of the POMDP

𝜋 ∈ Δ𝒮𝒜 every agent selects its action solely based on its individual state. Hence, policies

𝜋 ∈ Δ𝒮𝒜 that are decentralized in the sense of the POMDP admit a representation of the

form

(3.56) 𝜋(𝑎 |𝑠) =
𝑘∏
𝑖=1

𝜋𝑖(𝑎𝜈𝑖 |𝑠𝜈𝑖 )

for some policies 𝜋𝑖 ∈ Δ
𝒮𝜈𝑖
𝒜𝜈𝑖

. In contrast if a policy 𝜋 ∈ Δ𝒮𝒜 is decentralized in the

underlying multi-agent MDP every agent has access to the entire state tuple 𝑠 = (𝑠1 , . . . , 𝑠𝑛)
and hence we require

(3.57) 𝜋(𝑎 |𝑠) =
𝑘∏
𝑖=1

𝜋𝑖(𝑎𝜈𝑖 |𝑠)

for some 𝜋𝑖 ∈ Δ𝒮𝒜𝜈𝑖
. If we assume that all agents share the same state and action space, i.e.,

𝒮𝑖 = 𝑆 and 𝒜𝑖 = 𝐴 then in the jointly observable case the dimension of the state-action

frequencies and the decentralized policies is given by

(3.58)

𝑘∑
𝑖=1

|𝑆 | |𝜈𝑖 |
(
|𝐴| |𝜈𝑖 | − 1

)
.

In the case of centralized and completely decentralized policies the dimension is given

by |𝑆 |𝑛(|𝐴|𝑛 − 1) and 𝑛 |𝑆 |(|𝐴| − 1) respectively. Note that in the corresponding fully

observable MDP the respective dimensions are given by |𝑆 |𝑛(|𝐴|𝑛 − 1) and 𝑛 |𝑆 |𝑛(|𝐴| − 1).
For a jointly observable multi-agent problem the defining equations in state-action

space simplify significantly as 𝛽+ = 𝐼 and 𝑆𝑜 = {𝑜} for 𝑜 ∈ 𝒪 = 𝒮. Hence, in the notation

of Theorem 3.31 we obtain

𝑝𝑠𝑎𝐼 ,𝑎𝐽 (𝜂) =
∑
𝑎′∈𝒜

𝑎′
𝐼
=𝑎𝐼 ,𝑎

′
𝐽
=𝑎𝐽

𝜂𝑠𝑎′ = 𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎𝐼 , 𝑎𝐽)
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and

𝑞𝑠,𝑠
′

𝑎𝐼 (𝜂) =
∑
𝑎′∈𝒜
𝑎′
𝐼
=𝑎𝐼

𝜂𝑠𝑎′ ·
(∑̃
𝑎∈𝒜

𝜂𝑠′ �̃�

)
1−𝛿𝑠𝑠′

= 𝜂𝐼 ,+(𝑠, 𝑎𝐼) ·
(∑̃
𝑎∈𝒜

𝜂𝑠′ �̃�

)
1−𝛿𝑠𝑠′

.

Hence, the defining equations take the form

(3.59) 𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎𝐼 , 𝑎𝐽)𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎′𝐼 , 𝑎
′
𝐽) − 𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎𝐼 , 𝑎

′
𝐽)𝜂𝐼 ,𝐽 ,+(𝑠, 𝑎

′
𝐼 , 𝑎𝐽) = 0

and

(3.60) 𝜂𝐼 ,+(𝑠, 𝑎𝐼)
(∑̃
𝑎∈𝒜

𝜂𝑠′ �̃�

)
= 𝜂𝐼 ,+(𝑠′, 𝑎𝐼)

(∑̃
𝑎∈𝒜

𝜂𝑠 �̃�

)
for all 𝑠, 𝑠′ ∈ 𝒮 with 𝑠 ≠ 𝑠′ and 𝑠𝐼 = 𝑠′

𝐼
. In particular, other than in the general partially

obseravble case these are quadratic equations.

3.2.5. Conclusion and outlook. In this section we have showed that the feasible state-

action frequencies of partially observable Markov decision processes as well as of (fully

and partially observable) multi-agent Markov decision processes can be characterized

by polynomial inequalities. This characterizes these frequencies as a polynomially con-

strained subset of the probability simplex and hence as a semialgebraic statistical model.

Further, this implies that reward optimization in any of these models is equivalent to a

polynomially constrained linear objective program that generalizes the dual linear pro-

gram associated to an MDP. We provide an overview over the different characterization

and correspondences between inequalities regarding policies and state-action frequencies

obtained in this section in Table 3.1.

We give a complete characterization of the state-action frequencies achievable with

memoryless stochastic policies and believe that the following two directions provide

natural continuations of this work:

• Geometry of memory: Where we have focused on memoryless stochastic policies

a complementary study for finite memory policies could provide important

insights into the design of memory. An obvious approach to this is to augment

the state space with a finite memory and apply the results obtained here.

• Geometry of value functions of POMDPs: Further, we believe that studying the

geometry of the set

𝒱𝛽 = {𝑉𝜋
: 𝜋 ∈ Δ𝒪𝒜} ⊆ R

𝒮

of value functions of partially observable Markov decision processes would

complement our analysis of the state-action frequencies nicely. Note that for

fully observable problems the set of value functions has been characterized as a

finite union of polytopes [81, 304, 289], which has been used to design optimal

representations [44]. In contrast to state-action frequencies the policy can not

be reconstructed from its (state-action) value function. Therefore, the approach

taken here for the characterization of the feasible state-action frequencies can

not be transferred naively.
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(In)equalities of policies (In)equalities of state-action frequencies

Δ𝒮𝒜 is described by 𝒩𝜇
𝛾 is described by

𝜏(𝑎 |𝑠) ≥ 0 𝜂(𝑠, 𝑎) ≥ 0

MDPs

Row normalization:∑
𝑎 𝜏(𝑎 |𝑠) − 1 = 0

–

–

Discounted stationarity:

ℓ𝑠(𝜂) = 0

–

For 𝛾 = 1:∑
𝑠,𝑎 𝜂𝑠𝑎 − 1 = 0

Δ
𝒮 ,𝛽
𝒜 is described in Δ𝒮𝒜 by 𝒩𝛽

is described in𝒩 by

POMDPs

Linear (in)equalities

See Subsection 3.2.1

Closed form under Assumption 3.21:

See Theorem 3.22

Closed form for deterministic observ.:

See (3.33)

Polynomial (in)equalities

See Subsection 3.2.1

Closed form under Assumption 3.21:

See (3.30) and (3.31)

Vanishing of some 2 × 2 minors

See Theorem 3.25

Δ
𝒮 ,dec

𝒜 is described in Δ𝒮𝒜 by 𝒩dec
is described in𝒩 by

MA-MDPs

Vanishing of 2 × 2 minors

of marginals

See Proposition 3.28

Vanishing of 2 × 2 minors

of marginals

See Theorem 3.29

Δ
𝒪 ,dec

𝒜 is described in Δ𝒪𝒜 by 𝒩𝛽,dec
is described in𝒩𝛽

by

MA-POMDPs

Vanishing of 2 × 2 minors

of marginals and linear equations

See Proposition 3.30

Polynomial equations

See Theorem 3.31

Table 3.1. Correspondence of the defining linear and polynomial inequal-

ities of the policies and the (feasible) state-action frequencies for MDPs,

POMDPs, MA-MDPs and MA-POMDPs respectively.

3.3 Number and location of critical points

In this section we use the reformulation of the reward optimization problem as a poly-

nomially constraint linear objective problem to gain regarding the optimization problem

encountered in POMDPs. We apply tools from algebraic statistics and applied algebraic

geometry to describe the (algebraic) complexity of the reward optimization problem.

Again, we perceive the reward maximization problem as the maximization of a linear

function 𝑝0 over the set of feasible state-action frequencies 𝒩𝛽
, which is a polynomially

constrained subset of the state-action polytope 𝒩 , see Corollary 3.20 and Theorem 3.5.
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Since under Assumption 3.3 the parametrization 𝜋 ↦→ 𝜂𝜋 is injective and has a full-

rank Jacobian, see Lemma 3.8, the critical points of the reward function 𝑅 in the policy

polytope Δ𝒪𝒜 correspond to the critical points of 𝑝0 on𝒩𝛽
[281]. In general, critical points

of this linear function can occur on every boundary component of the semialgebraic

set𝒩𝛽
. The optimization problem thus has a combinatorial and a geometric component,

corresponding to the number of boundary components of each dimension and the number

of critical points in the interior of any given boundary component. We have discussed

the combinatorial part in Theorem 3.18 and focus now on the geometric part. Writing

𝒩𝛽 =

{
𝜂 ∈ R𝒮×𝒜 : 𝑝𝑖(𝜂) ≥ 0 for 𝑖 ∈ 𝐼

}
,

we are interested in the number of critical points of the reward optimization problem,

which in state-action space takes the form

(3.61) maximize 𝑝0(𝜂) subject to 𝑝𝑖(𝜂) ≥ 0 for 𝑖 ∈ 𝐼.

We call a point 𝜂 (primal) feasible if it satisfies 𝑝𝑖(𝜂) ≥ 0 for all 𝑖 ∈ 𝐼 and further we call

a feasible point 𝜂 critical if there exists 𝜅 ∈ R𝐼≥0
such that (𝜂, 𝜅) solves the Karush-Kuhn-

Tucker conditions (KKT conditions)

(KKT) ∇𝑝0(𝜂) +
∑
𝑖∈𝐼𝑎(𝜂)

𝜅𝑖∇𝑝𝑖(𝜂) = 0,

where 𝐼𝑎(𝜂) B {𝑖 ∈ 𝐼 : 𝑝𝑖(𝜂) = 0} denotes the constraints that are active at 𝜂. We refer to

the non negativity condition 𝜅𝑖 ≥ 0 as the dual feasibility condition.

The number of critical points on the interior of a boundary component

int(𝐹𝐽) =
{
𝜂 ∈ 𝒩𝛽

: 𝑝 𝑗(𝜂) = 0 for 𝑗 ∈ 𝐽 , 𝑝𝑖(𝜂) > 0 for 𝑖 ∈ 𝐼 \ 𝐽
}
,

provides an upper bounded by the critical points over the variety

𝒱𝐽 B
{
𝜂 ∈ R𝒮×𝒜 : 𝑝 𝑗(𝜂) = 0 for 𝑗 ∈ 𝐽

}
.

For the case of an equality constrained optimization problem the KKT system (KKT)

reduces to the Lagrange system

(L) ∇𝑝0(𝜂) +
∑
𝑗∈𝐽

𝜆 𝑗∇𝑝 𝑗(𝜂) = 0

for some 𝜆 ∈ R𝐽 , where the Lagrange multipliers 𝜆 𝑗 are allowed to have arbitrary signs.

Hence, we can upper bound the number of critical points in the interior of the face 𝐹𝐽 by

the number of critical points of the polynomial optimization problem

(3.62) maximize 𝑝0(𝜂) subject to 𝑝 𝑗(𝜂) = 0 for 𝑗 ∈ 𝐽.

An upper bound on the number of critical points of the original inequality constrained

problem (3.61) can be obtained by iterating over the individual boundary components.
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Solutions of the KKT system vs the Lagrange systems. First, we note that every

primal feasible point 𝜂 that is critical does indeed solve the Lagrange system (L) for

𝐽 = 𝐼𝑎(𝜂). Hence, when obtaining upper bounds on the number of solutions of the

Lagrange systems over the individual boundary components does in fact yield an upper

bound on the number of critical points.

However, not every solution (𝜂,𝜆) ∈ 𝒱𝐽 ×R𝐽 of one of the Lagrange systems is a critical

point. First, it is not clear whether the Lagrange multipliers 𝜆 𝑗 can be chosen non negative

and further 𝜂 might not satisfy the primal feasibility conditions 𝑝𝑖(𝜂) ≥ 0.

If (𝜂,𝜆) ∈ 𝒱𝐽 × R𝐽 solves the Lagrange system (L) then it surely solves the KKT

system (KKT) without the dual feasibility condition 𝜅 ≥ 0 and vice versa.

Note that there are choices 𝐽 ⊆ 𝐼 such that the corresponding variety𝒱𝐽 is non-trivial

but contains no feasible points. Such choices of 𝐽 can be excluded when combining

the bounds on the number of solutions of the Lagrange systems. If this is done then

then the upper bounds aggregated over the choices of 𝐽 such that 𝒱𝐽 contain feasible

points will provide a tighter upper bound on the number of critical points than the

number of solutions of the KKT system (KKT). In a general setting it is hard to decide

whether 𝒱𝐽 contains a feasible point. When the boundary components of the feasible

set {𝜂 : 𝑝𝑖(𝜂) ≥ 0 for 𝑖 ∈ 𝐼} are known then this can be done efficiently. In the case of

state-action frequencies the boundary components are one to one to the faces of the policy

polytope Δ𝒪𝒜 , see Corollary 3.20.

Overall we have the following chain of inclusions, which are also visualized in Fig-

ure 3.4:

{critical points} = {primal and dual feasible solutions of (KKT)}
⊆ {primal feasible solutions of (KKT)}
= {primal feasible solutions of (L)}
⊆ {solutions of (L) for 𝐽 ⊆ 𝐼 such that𝒱𝐽 contains feasible points}
⊆ {solutions of (L) for some 𝐽 ⊆ 𝐼}
= {solutions of (KKT)}.

(3.63)

3.3.1. The algebraic degree of polynomial optimization. For the sake of notation,

let us assume that 𝐽 = {1, . . . , 𝑚} from now on. We try to present the results from

the theory of algebraic degrees that we use here and refer the interested reader to the

excellent introduction in [64] and the references therein. Although in practice, we might be

interested in the number of real critical points we consider the problem over the complex

numbers, which gives an upper bound on the number of real critical points. Working

over the complex number has the advantage that the number of solutions of a system of

polynomial equations is constant under suitable genericity assumptions. Here, we say

that a property holds for a generic point if there is an open and dense subset (usually of

full measure) such that the property holds for all points within this set; we say a property

holds for a generic polynomial if it holds for generic coefficients.

Let us consider the polynomial optimization problem (3.62), where we do not require

𝑝0 to be linear. Further, denote the number of variables by 𝑛 (in the case of state-action
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Figure 3.4. Schematic illustration of the feasible region (gray) and objective

gradient (arrow) of a polynomially constrained linear program showing

(i) the primal and dual feasible solutions of (KKT) (red pentagons), (ii)

the ptimal feasible solutions of (KKT) or equivalently (L) (red pentagons

and green hexagons), (iii) solutions of (L) for some 𝐽 ⊆ 𝐼 such that 𝒱𝐽
contains feasible points (red pentagons, green hexagons and black points)

(iv) solutions of (L) for some 𝐽 ⊆ 𝐼 or equivalently (4.11) (any marked point).

frequencies 𝑛 = 𝑛𝒮𝑛𝒜) and denote the degrees of 𝑝0 , . . . , 𝑝𝑚 by 𝑑0 , . . . , 𝑑𝑚 . Again, a point

is critical, if it satisfies the KKT conditions

(KKT) ∇𝑝0(𝑥) +
𝑚∑
𝑖=1

𝜆𝑖∇𝑝𝑖(𝑥) = 0, 𝑝1(𝑥) = · · · = 𝑝𝑚(𝑥) = 0,

for some 𝜆 ∈ C𝑛 , which is a system of polynomial equations in (𝑥,𝜆). The number of

complex solutions to those criticality equations, when finite, is called the algebraic degree
of the problem. The algebraic degree is determined by the nature of the polynomials

𝑝0 , . . . , 𝑝𝑚 and captures the complexity of the optimization problem as the coordinates

of critical points can be shown to be roots of some univariate polynomials whose degree

equals the algebraic degree and whose coefficients are rational functions of the coefficients

of 𝑝0 , . . . , 𝑝𝑚 , see [163, 31]. A special case of (3.62) is when 𝑚 = 𝑛 and the polynomials

𝑝1 , . . . , 𝑝𝑚 are generic. Then by Bézout’s theorem there are exactly 𝑑1 · · · 𝑑𝑛 isolated

points satisfying the polynomial constraints and all of them are critical and hence the

algebraic degree is precisely 𝑑1 · · · 𝑑𝑛 [280]. If the polynomials 𝑝0 , . . . , 𝑝𝑚 define a complete

intersection, i.e., the co-dimension of their induced variety is 𝑚 + 1, the algebraic degree

of (3.62) is upper bounded by

(3.64) 𝑑1 · · · 𝑑𝑚
∑

𝑖0+···+𝑖𝑚=𝑛−𝑚
(𝑑0 − 1)𝑖0 · · · (𝑑𝑚 − 1)𝑖𝑚 ,

and this bound is attained for generic polynomials [221, 64]. For non-complete intersec-

tions, the expression (3.64) does not need to yield an upper bound if some constraints

are redundant. However, we can modify the expression to obtain a valid upper bound.
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Indeed, if 𝑙 and 𝑐 = 𝑛 − 𝑙 denote the dimension and co-dimension of

𝒱 B {𝑥 : 𝑝1(𝑥) = · · · = 𝑝𝑚(𝑥) = 0}

and if 𝑝0 is generic and if the degrees are ordered, i.e., 𝑑1 ≥ · · · ≥ 𝑑𝑚 , then the algebraic

degree is upper bounded by

(3.65) 𝑑1 · · · 𝑑𝑐
∑

𝑖0+···+𝑖𝑐=𝑙
(𝑑0 − 1)𝑖0 · · · (𝑑𝑐 − 1)𝑖𝑐 .

When the polynomials are not generic, then this provides an upper bound on the number

of isolated critical points. To see this, fix a subset 𝐽 ⊆ {1, . . . , 𝑚} of cardinality 𝑐, such that

𝒱 = {𝑥 : 𝑝 𝑗(𝑥) = 0 for 𝑗 ∈ 𝐽}.

Then we can apply the bound from (3.64) and evaluate it to be∏
𝑗∈𝐽

𝑑 𝑗

∑
𝑖0+

∑
𝑗∈𝐽 𝑖 𝑗=𝑛−𝑐

(𝑑0 − 1)𝑖0 ·
∏
𝑗∈𝐽
(𝑑 𝑗 − 1)𝑖 𝑗 ,

which is clearly upper bounded by (3.65). If 𝑝0 is linear, then 𝑑0 = 1 and the expression

simplifies to

𝑑1 · · · 𝑑𝑐
∑

𝑖1+···+𝑖𝑐=𝑙
(𝑑1 − 1)𝑖0 · · · (𝑑𝑐 − 1)𝑖𝑐 .

If further 𝑑𝑖 = 1 for 𝑖 ≥ 𝑘 for some 𝑘 ≤ 𝑐, then we obtain

(3.66) 𝑑1 · · · 𝑑𝑘
∑

𝑖1+···+𝑖𝑘=𝑙
(𝑑1 − 1)𝑖1 · · · (𝑑𝑘 − 1)𝑖𝑘 .

3.3.2. Upper bounds for invertible observation matrix. Here, we apply results from

the general theory of algebraic degrees to the case of invertible observation matrices, which

yield an explicit expression of the polynomials constraints defining the set of state-action

frequencies. If the observation matrix is invertible we have seen in Subsection 3.2.2 that

there are no polynomial equalities but only inequalities with polynomials given in (3.30).

Theorem 3.33. Consider a POMDP (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟), 𝛾 ∈ [0, 1) that 𝛽 ∈ R𝒮×𝒪 is invertible,
and that the positivity Assumption 3.3 holds. For 𝐼 ⊆ 𝒜 ×𝒪 consider the following set of policies

int(𝐹𝐼) =
{
𝜋 ∈ Δ𝒪𝒜 : 𝜋(𝑎 |𝑜) = 0 if and only if (𝑎, 𝑜) ∈ 𝐼

}
,

which is the relative interior of a face 𝐹𝐼 of the policy polytope. Let

𝑂 B {𝑜 ∈ 𝒪 : (𝑎, 𝑜) ∈ 𝐼 for some 𝑎}

and set 𝑘𝑜 B |{𝑎 ∈ 𝒜 : (𝑎, 𝑜) ∈ 𝐼}| as well as 𝑑𝑜 B |{𝑠 ∈ 𝒮 : 𝛽−1

𝑜𝑠 ≠ 0}|. Then, the number of
isolated critical points of the reward function on int(𝐹) is at most

(3.67)

(∏
𝑜∈𝑂

𝑑
𝑘𝑜
𝑜

)
·

∑
∑
𝑜∈𝑂 𝑖𝑜=𝑙

∏
𝑜∈𝑂
(𝑑𝑜 − 1)𝑖𝑜 ,

where 𝑙 = 𝑛𝒮(𝑛𝒜 − 1) − |𝐼 |.
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Proof. The face 𝐺𝐼 of the effective policy polytope corresponding to 𝐹𝐼 is given by

int(𝐺𝐼) =
{
𝜏 ∈ Δ𝒮 ,𝛽𝒜 : (𝛽−1𝜏)𝑜𝑎 = 0⇔ (𝑎, 𝑜) ∈ 𝐼

}
.

Using the explicit formulas from Subsection 3.2.2 and in particular (3.30) it holds that

𝒩𝛽 = {𝜂 ∈ 𝒩 : 𝑝𝑎𝑜(𝜂) ≥ 0 for all 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪},
where

𝑝𝑎𝑜(𝜂) =
∑
𝑠∈𝑆𝑜

©«𝛽−1

𝑜𝑠 𝜂𝑠𝑎
∏

𝑠′∈𝑆𝑜\{𝑠}

∑
𝑎′

𝜂𝑠′𝑎′
ª®¬

and 𝑆𝑜 B {𝑠 ∈ 𝒮 : 𝛽−1

𝑜𝑠 ≠ 0}. Then, 𝐹𝐼 and 𝐺𝐼 correspond to the boundary component

int(𝐻𝐼) =
{
𝜂 ∈ 𝒩𝛽

: 𝑝𝑎𝑜(𝜂) = 0⇔ (𝑎, 𝑜) ∈ 𝐼
}

=
{
𝜂 ∈ 𝒩 : 𝑝𝑎𝑜(𝜂) ≥ 0 and equality if and only if (𝑎, 𝑜) ∈ 𝐼

}
of the set 𝒩𝛽

of feasible state-action frequencies. In order to use the explicit description

of the state-action polytope𝒩 given in Theorem (3.5), we remind the reader that

ℓ𝑠(𝜂) B
∑
𝑎∈𝒜

𝜂𝑠𝑎 − 𝛾
∑

𝑠′∈𝒮 ,𝑎′∈𝒜
𝜂𝑠′𝑎′𝛼(𝑠 |𝑠′, 𝑎′) − (1 − 𝛾)𝜇𝑠 .

Then, it holds that

int(𝐻𝐼) =
{
𝜂 ∈ R𝒮×𝒜≥0

:

𝑝𝑎𝑜(𝜂) ≥ 0 and equality if and only if (𝑎, 𝑜) ∈ 𝐼
ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮

}
.

Since the state frequencies are all positive by Assumption 3.3, for 𝜂 ∈ int(𝐻) it holds

𝜂𝑠𝑎 = 0 if and only if 𝜏(𝑎 |𝑠) B 𝜂(𝑎 |𝑠) = 0. Note that 𝜏 = 𝜋 ◦ 𝛽 for some 𝜋 ∈ Δ𝒪𝒜 by

assumption and thus for 𝜂 ∈ int(𝐻) it holds that 𝜂𝑠𝑎 = 0 if and only if

0 = 𝜏(𝑎 |𝑠) =
∑
𝑜

𝛽(𝑜 |𝑠)𝜋(𝑎 |𝑜),

which holds if and only if (𝑎, 𝑜) ∈ 𝐼 for every 𝑜 ∈ 𝒪 with 𝛽(𝑜 |𝑠) > 0. Hence, if we write

𝐽 B {(𝑠, 𝑎) ∈ 𝒮 × 𝒜 : (𝑎, 𝑜) ∈ 𝐼 for all 𝑜 ∈ 𝒪 with 𝛽(𝑜 |𝑠) > 0},
we obtain

int(𝐻𝐼) =

𝜂 ∈ R
𝒮×𝒜

:

𝜂𝑠𝑎 ≥ 0 and equality if and only if (𝑠, 𝑎) ∈ 𝐽 ,
ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮 ,

𝑝𝑎𝑜(𝜂) ≥ 0 and equality if and only if (𝑎, 𝑜) ∈ 𝐼

 .
The number of critical points over this surface is upper bounded by the number of critical

points over

𝒱𝐼 =

𝜂 ∈ R
𝒮×𝒜

:

𝜂𝑠𝑎 = 0 for (𝑠, 𝑎) ∈ 𝐽 ,
ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮 ,

𝑝𝑎𝑜(𝜂) = 0 for (𝑎, 𝑜) ∈ 𝐼

 .
Now we want to apply (3.66) and note that the objective 𝑝0 = ⟨𝑟, ·⟩𝒮×𝒜 is generic. Further,

we see that there are |𝐼 | non-linear constraints and hence in the notation of (3.66) have
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𝑘 = |𝐼 |. Further, we can calculate to dimension and co-dimension of𝒱𝐼 as follows. Note

that 𝐹𝐼 →𝒱𝐼 ,𝜋 ↦→ 𝜂𝜋 is a parametrization of𝒱 (it parametrizes a full dimensional subset

of𝒱𝐼), which is injective and has full rank Jacobian everywhere. Hence, we have

𝑙 = dim(𝒱𝐼) = dim(𝐹𝐼) = 𝑛𝒮(𝑛𝒜 − 1) − |𝐼 | = 𝑛𝒮𝑛𝒜 − 𝑛𝒮 − |𝐼 |.

The co-dimension of 𝒱𝐼 is given by 𝑛𝒮𝑛𝒜 − dim(𝒱𝐼) = 𝑛𝒮 + |𝐼 | and with the notation

from (3.66), we have 𝑐 = 𝑛𝒮 + |𝐼 | ≥ 𝑘. Further, it holds that deg(𝑝𝑎𝑜) ≤ 𝑑𝑜 and using (3.66)

yields an upper bound of∏
(𝑠,𝑜)∈𝐼

𝑑𝑜 ·
∑

∑
(𝑎,𝑜)∈𝐼 𝑗𝑎𝑜=𝑙

∏
(𝑎,𝑜)∈𝐼

(𝑑𝑜 − 1)𝑗𝑎𝑜 =
∏
𝑜∈𝑂

𝑑
𝑘𝑜
𝑜 ·

∑
∑
𝑜∈𝑂 𝑖𝑜=𝑙

∏
𝑜∈𝑂
(𝑑𝑜 − 1)𝑖𝑜 ,

which finishes the proof. □

Remark 3.34 (The mean reward case). Theorem 3.33 can be generalized to the mean

reward case, i.e., to the case of 𝛾 = 1 with some adjustments. Indeed, the proof can be

carried out analogously, however, the characterization of𝒩 has the extra linear condition

that

∑
𝑠𝑎 𝜂𝑠𝑎 = 1, see also Theorem 3.5. In the mean reward case we have with the notation

from the proof above

int(𝐻𝐼) =

𝜂 ∈ R
𝒮×𝒜

:

𝜂𝑠𝑎 ≥ 0 and equality if and only if (𝑠, 𝑎) ∈ 𝐽 ,
ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮 ,∑𝑠𝑎 𝜂𝑠𝑎 = 1,

𝑝𝑎𝑜(𝜂) ≥ 0 and equality if and only if (𝑎, 𝑜) ∈ 𝐼

 .
Hence, the upper bound in (3.67) remains valid if we set

𝑙 B dim

{
𝜂 ∈ R𝒮×𝒜 :

𝜂𝑠𝑎 = 0 for (𝑠, 𝑎) ∈ 𝐽 , ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮 ,∑𝑠𝑎 𝜂𝑠𝑎 = 1,

𝑝𝑎𝑜(𝜂) = 0 for (𝑎, 𝑜) ∈ 𝐼

}
.(3.68)

In the discounted case we obtained an explicit formulation for 𝑙. In the mean case the value

obeys a case distinction depending, in particular, on whether the constraint

∑
𝑠𝑎 𝜂𝑠𝑎 = 1 is

redundant with respect to the constraints ℓ𝑠(𝜂) = 0. However, the value can be computed

from the above expression (3.68) in any given specific case.

Corollary 3.35 (Critical points of MDPs). Consider an MDP (𝒮 ,𝒜 , 𝛼, 𝑟), 𝛾 ∈ [0, 1) and let
Assumption 3.3 holds. Then, every isolated critical point 𝜋 ∈ Δ𝒮𝒜 of the discounted expected
reward function is deterministic.

Proof. We evaluate the bound of Equation (3.67) and have 𝒪 = 𝒮 in this fully observable

case. If the face is not a vertex, then the corresponding index set 𝐼 ⊆ 𝒜 × 𝒪 satisfies

|𝐼 | < 𝑛𝒪(𝑛𝒜 − 1) and thus in the notation from Theorem 3.33 it holds that 𝑙 > 0. Note that

𝑑𝑜 = 1 for every 𝑜 ∈ 𝒪 and hence there is at least one factor in the product in (3.67) that

vanishes and so does the whole expression in (3.67). □

The result above strengthens Theorem 2.23, which ensures the existence of a determin-

istic optimal policy.

Example 3.36 (Crying baby example continued). Let us revisit the crying baby example

and discuss the implications of the bound on the number of critical points given in
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Theorem 3.33. First, recall that the observation matrix 𝛽 ∈ Δ𝒮𝒪 is invertible with inverse

𝛽−1 =

( 𝑠1 𝑠2

𝑜1 1 0

𝑜2 −1 2

)
and hence in the notation of Theorem 3.33 we have 𝑑𝑜1

= 1 and 𝑑𝑜2
= 2. Consider first

the interior of a face 𝐹 for which we assume that 𝜋(𝑎 |𝑜2) > 0 for 𝑎 ∈ 𝒜 or in other words

𝑘𝑜2
= 0 and consequently 𝑂 = {𝑜1}. Then 𝑙 = 𝑛𝒮(𝑛𝒜 − 1) − |𝐼 | = 2 − 𝑘𝑜1

≥ 1 > 0 since

𝑘𝑜1
= 2 would imply 𝜋(𝑎1 |𝑜1) = 𝜋(𝑎2 |𝑜1) = 0, which would correspond to the empty face.

Now the second factor of (3.67) becomes (𝑑𝑜1
− 1)𝑙 = 0 and hence there is no critical point

if 𝑘𝑜2
= 0. Note that for any non empty face 𝑘𝑜2

≤ 1 and hence for generic reward vector

𝑟 there can only be a critical policy if 𝑘𝑜2
= 1, i.e., if the face only contains policies, which

are deterministic on 𝑜2. In this particular case this strengthens Theorem 2.30 that assures

the existence of an optimal policy, which is deterministic on 𝑜2.

Let us now consider the case 𝑘𝑜2
= 1, then either 𝑘𝑜1

= 0 or 𝑘𝑜1
= 1. In the case that

𝑘𝑜1
= 0 we have 𝑂 = {𝑜2}, 𝑙 = 1 and hence the bound evaluates to

𝑑
𝑘𝑜

2

𝑜2

(𝑑𝑜2
− 1)𝑙 = 2.

If 𝑘𝑜1
= 1, the face consists of a single deterministic policy and the bound evaluates to 2.

Remark 3.37 (Geometry around the critical points). The key argument in the proof of

Theorem 3.33 is that a critical point 𝜋 ∈ Δ𝒪𝒜 of the reward function corresponds to a

critical point 𝜂 of a linear function over a multi-homogeneous variety𝒱. A closer study

of this variety would shed light into the geometry of the loss landscape around the critical

points, which has important implications for gradient based methods.

Remark 3.38 (Efficient design of observation mechanisms). The bound (3.67) could be

used to design observation mechanisms in such a way that the reward function has

the least critical points, which would potentially make the system more approachable

for gradient based methods. Consider two observation kernels 𝛽, 𝛽′ ∈ Δ𝒮𝒪 satisfying

∥𝛽(·|𝑠) − 𝛽′(·|𝑠)∥𝑇𝑉 =
∑
𝑜 |𝛽(𝑜 |𝑠) − 𝛽′(𝑜 |𝑠)|/2 ≤ 𝜀 for every 𝑠 ∈ 𝒮. Then if 𝜋 ∈ Δ𝒪𝒜 is

an optimal policy of (𝒮 ,𝒜 ,𝒪 , 𝛼, 𝛽′, 𝑟), then it is a 2𝜀𝛾∥𝑟∥∞/(1 − 𝛾)-optimal policy of

(𝒮 ,𝒜 ,𝒪 , 𝛼, 𝛽, 𝑟), see [239]. Hence, if 𝛽 does not fulfill the invertibility assumption made

in Theorem 3.33 an arbitrary small perturbation of it does (given that 𝛽 is a square matrix)

and hence Theorem 3.33 provides an upper bound on the number of critical points of an

approximate problem. Further, note that the faces, which are guaranteed to contain an

optimal policy by [204] might be considerably fewer for the POMDP (𝒮 ,𝒜 ,𝒪 , 𝛼, 𝛽′, 𝑟).
The bound (3.67) could be used to identify the best perturbations of a given magnitude

to obtain a problem with a minimal number of critical points.

3.3.3. Upper bounds for deterministic observations. In this section, we study the

critical points of the reward optimization problem with deterministic observations.

The description of the set of feasible state-action frequencies 𝒩𝛽
obtained in Corol-

lary 3.24 implies that the reward maximization problem in state action space (ROP-SA) is
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the following constrained polynomial optimization problem:

(3.69)

maximize ⟨𝑟, 𝜂⟩ subject to


ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮 ,
𝑝𝑜𝑠𝑎(𝜂) = 0 for 𝑜 ∈ 𝒪 , 𝑎 ∈ 𝒜 \ {𝑎𝑜}, 𝑠 ∈ 𝑆𝑜 \ {𝑠𝑜},

𝜂𝑠𝑎 ≥ 0 for 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜 ,

where the linear constraints ℓ𝑠 are given in Proposition 3.5, the polynomial constraints

𝑝𝑜𝑠𝑎(𝜂) are provided in (3.35) taking a fixed action 𝑎𝑜 ∈ 𝒜 and a fixed state 𝑠𝑜 ∈ 𝑆𝑜 for each

observation 𝑜 ∈ 𝒪, and the inequality constraints simply ensure the entries of 𝜂 being

nonnegative. Observe that problem (3.69) is in fact a quadratically constrained linear

program.

We bound the number of critical points individually for each boundary component of

the feasible set. A boundary component consists of all feasible points for which a given

subset of the inequality constraints are active. The boundary components of the feasible

set𝒩𝛽
are in one-to-one correspondence with the faces of Δ𝒪𝒜 according to

(3.70)

𝐵 =

{
𝜋 ∈ Δ𝒪𝒜 : 𝜋(𝑎 |𝑜) = 0 for 𝑎 ∈ 𝐴𝑜 , 𝑜 ∈ 𝒪

}
↔ 𝐹 =

{
𝜂 ∈ 𝒩𝛽

: 𝜂𝑠𝑎 = 0 for 𝑎 ∈ 𝐴𝑔𝛽(𝑠)
}
,

where 𝐴𝑜 is a proper subset of𝒜 for every 𝑜 ∈ 𝒪, and 𝑔𝛽(𝑠) is the observation associated

with state 𝑠. In particular, there is a boundary component associated to each tuple (𝐴𝑜)𝑜∈𝒪
with 𝐴𝑜 ⊊ 𝒜, 𝑜 ∈ 𝒪.

We point out the following result, which allows us to ignore high-dimensional bound-

ary components when searching for a maximizer of the reward. Recall that for an obser-

vation 𝑜 ∈ 𝒪, the cardinalities of the fibers of 𝑔𝛽 are denoted by 𝑑𝑜 = |𝑆𝑜 |.
Theorem 3.39 (Existence of maximizers in low dimensional faces, [204]). There exist𝐴𝑜 ⊊ 𝒜
with |𝐴𝑐𝑜 | ≤ 𝑑𝑜 , 𝑜 ∈ 𝒪, such that the set 𝐵 described in (3.70) contains a (globally optimal) solution
of the problem (3.69).

Remark 3.40. Instead of considering the critical points in all (2𝑛𝒜 −1)𝑛𝒪 boundary compo-

nents, it is enough to consider those in the boundary components with 𝐴𝑜 ⊊ 𝒜 satisfying

|𝐴𝑜 | ≥ 𝑛𝒜−𝑑𝑜 . This reduces the number of boundary components that need to be checked

to ∏
𝑜∈𝒪

©«
𝑛𝒜−1∑

𝑘𝑜=max(𝑛𝒜−𝑑𝑜 ,0)

(
𝑛𝒜
𝑘𝑜

)ª®¬ ,
which we call relevant boundary components. Note that this number only depends on the

number of actions 𝑛𝒜 and 𝑑𝑜 (the cardinality of the fibers of 𝑔𝛽).

With the description of the boundary components of the feasible set at hand, we can

deduce upper bounds on the number of critical points over each of them based on the

degrees of the defining equations and the degree of the objective function.

Theorem 3.41 (Bound on the algebraic degree). Consider a POMDP (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟),
𝛾 ∈ [0, 1) with deterministic observations and with 𝑑𝑜 B {𝑠 ∈ 𝒮 : 𝛽(𝑜 |𝑠) > 0} we denote the
number of states that are mapped to 𝑜 and let the positivity Assumption 3.3 hold. Fix 𝐴𝑜 ⊊ 𝒜
for every 𝑜 ∈ 𝒪 and set 𝑛 B 𝑛𝒮𝑛𝒜 − 𝑛𝒮 −

∑
𝑜 𝑑𝑜 |𝐴𝑜 | and 𝑚 B

∑
𝑜(𝑑𝑜 − 1)(|𝐴𝑐𝑜 | − 1), where

we assume 𝑛 is not zero. Then the number of isolated critical points the reward function over the
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interior of the face

int(𝐹) = {𝜋 ∈ Δ𝒪𝒜 : 𝜋(𝑎 |𝑜) = 0 if and only if 𝑎 ∈ 𝐴𝑜}

is upper bounded by 2
𝑚
(𝑛−1

𝑚−1

)
.

Proof. First, note that the face 𝐹 = {𝜋 ∈ Δ𝒪𝒜 : 𝜋(𝑎 |𝑜) = 0 for 𝑎 ∈ 𝐴𝑜} corresponds to the

boundary component

(3.71) 𝐵 = {𝜂 ∈ ℒ ∩ 𝒳 : 𝜂𝑠𝑎 = 0 for 𝑎 ∈ 𝐴𝑔𝛽(𝑠)}.

Since the parametrization 𝜋 ↦→ 𝜂𝜋 has full rank Jacobian everywhere, see Lemma 3.1,

the number of critical points of the reward function on int(𝐹) is upper bounded by the

number of critical points of the linear function 𝜂 ↦→ ⟨𝑟, 𝜂⟩𝒮×𝒜 over 𝐵.

Recall from Corollary 3.24 that 𝒩𝛽
is defined in R𝒮×𝒜 as an intersection of 𝑛𝒮 linear

equations,

∑
𝑜(𝑑𝑜 − 1)(𝑛𝒜 − 1) quadratic equations of the form (3.35), and the linear

inequalities 𝜂 ≥ 0. We start by showing that the family of linear equations ℓ𝑠(𝜂) = 0, 𝑠 ∈ 𝒮
and 𝜂𝑠𝑎 = 0, 𝑎 ∈ 𝐴𝑜 , 𝑠 ∈ 𝑆𝑜 , 𝑜 ∈ 𝒪 is linearly independent for any choice of 𝐴𝑜 ⊊ 𝒜,

𝑜 ∈ 𝒪. For this we first note that the linear equations ℓ𝑠(𝜂) = 0, 𝑠 ∈ 𝒮 define the space

ℒ ⊆ R𝒮×𝒜 of dimension dim(ℒ) = dim(affine(Δ𝒮𝒜)) = 𝑛𝒮(𝑛𝒜 − 1), see Proposition 3.4,

which implies their linear independence. It now suffices to see that the restrictions of 𝜂𝑠𝑎
toℒ are linearly independent. Note that the pullback of the equations 𝜂𝑠𝑎 = 0 restricted to

ℒ along the birational map Ψ are the equations 𝜏𝑎𝑠 = 0, 𝑎 ∈ 𝐴𝑜 , 𝑠 ∈ 𝑆𝑜 , which are linearly

independent on affine(Δ𝒮𝒜).
On the set 𝐵 given in (3.71) there are

∑
𝑜 𝑑𝑜 |𝐴𝑜 | active linear inequalities with 𝐴𝑜 ⊊ 𝒜

for each 𝑜 ∈ 𝒪, and hence 𝐵 is contained in an affine space of dimension

𝑛 = 𝑛𝒮𝑛𝒜 − 𝑛𝒮 −
∑
𝑜

𝑑𝑜 |𝐴𝑜 |.

Further, given these linear equations, the quadratic equations

𝑝𝑜𝑠𝑎(𝜂) = 𝜂𝑠𝑎
∑
𝑎′∈𝒜

𝜂𝑠𝑜 𝑎′ − 𝜂𝑠𝑜 𝑎
∑
𝑎′∈𝒜

𝜂𝑠𝑎′ = 0

are redundant for all 𝑎 ∈ 𝐴𝑜 , 𝑠 ∈ 𝑆𝑜 . By choosing 𝑎𝑜 ∈ 𝐴𝑐𝑜 in Corollary 3.24 for every 𝑜 ∈ 𝒪
there remain 𝑛𝒜 − |𝐴𝑜 | − 1 non-redundant quadratic equalities for every 𝑠 ∈ 𝑆𝑜 \ {𝑠𝑜}.
Therefore, we get 𝑚 =

∑
𝑜(𝑑𝑜 − 1)(|𝐴𝑐𝑜 | − 1) non-redundant quadratic equalities. By

Theorem 2.2 and Corollary 2.5 in [147] the algebraic degree for the optimization of the

linear function 𝑟 ∈ R𝒮×𝒜 over an 𝑛-dimensional affine space subject to 𝑚 non-redundant

quadratic constraints is upper bounded by 2
𝑚
(𝑛−1

𝑚−1

)
. □

With Theorem 3.41 we can provide upper bounds for the number of critical points of

the optimization problem (3.69). Indeed, the number of critical points over the interior

(3.72) {𝜂 ∈ ℒ ∩ 𝒳 : 𝜂𝑠𝑎 = 0 for all 𝑎 ∈ 𝐴𝑔𝛽(𝑠) , 𝜂𝑠𝑎 > 0 otherwise}

of a boundary component is clearly upper bounded by the number of critical points over 𝐵

defined in (3.71). This bound over the individual boundary components can be summed

to obtain an upper bound on the number of critical points of the polynomial optimization

problem (3.69), see also [147]. Note that the Zariski closure of the interior of a boundary

component defined in (3.72) is contained in 𝐵 but might be a strict subset. Similarly, a
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bound on the number of critical points over the relevant boundary components can be

established.

In Table 3.2 we present the upper bounds on the number of critical points for problems

of different sizes. We compare the bound on the total number of critical points obtained

by iterating Theorem 3.41 over all boundary components and the one iterating only over

the relevant components described in Theorem 3.39. In addition, we report the total and

relevant number of boundary components discussed in Remark 3.40. Both the number of

boundary components and the upper bound on the number of critical points, depend on

𝑛𝒮 , 𝑛𝒜 , and the tuple (𝑑𝑜)𝑜∈𝒪 . The two extreme cases for the tuple (𝑑𝑜)𝑜∈𝒪 , namely (𝑛𝒮)
and (1, . . . , 1), correspond to a numb controller, i.e., all states map to the same observation,

and the fully observable case, i.e., states and observations are in one-to-one correspondence,

respectively. The bounds are independent of the specific transition kernel 𝛼 ∈ Δ𝒮𝒮×𝒜 .

𝑛𝒮 𝑛𝒜
partitions of 𝑛𝒮 :

(𝑑𝑜)𝑜∈𝒪

Number of boundary

components

Bound on number of critical

points

total relevant total relevant

3 2

(3) 3 3 10 10

(2, 1) 9 6 10 8

(1, 1, 1) 27 8 8 8

4 3

(4) 7 7 1419 1419

(3, 1) 49 21 2237 561

(2, 2) 49 36 1265 153

(2, 1, 1) 343 54 1189 81

(1, 1, 1, 1) 2401 81 81 81

5 3

(5) 7 7 9411 9411

(4, 1) 49 21 23745 4257

(3, 2) 49 42 13431 4371

(3, 1, 1) 343 63 24363 1683

(2, 2, 1) 343 108 12159 459

(2, 1, 1, 1) 2401 162 9195 243

(1, 1, 1, 1, 1) 16807 243 243 243

Table 3.2. Listed are the number of boundary components and the upper

bound on the number of critical points from Theorem 3.41 both over all

boundary components and over the subset of relevant boundary compo-

nents from Theorem 3.39 for problems of different size.

In these examples, we observe that restricting to the relevant boundary components

significantly reduces the upper bound. This is reflected in the last two columns in Table 3.2.

The difference is most notable when the fibers of 𝑔𝛽 have a small cardinality, i.e., only few

states lead to the same observation. In the fully observable case, the relevant boundary

components correspond to the vertices of Δ𝒪𝒜 . This is consistent with the fact that in the

fully observable case the feasible set of state-action frequencies 𝒩 is a polytope [93] and

hence the optimization problem (3.69) is a linear program, for which the solutions are

attained at the vertices. On the other hand, in the case of a numb controller (with a single

observation 𝑜), all boundary components are relevant since 𝑑𝑜 = 𝑛𝒮 .
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3.3.4. A tighter bound for one observation and two actions. Already in the Exam-

ple 3.36 of the crying baby we have seen that the bound from Theorem 3.33 on the number

of critical points are not tight. One reason for this is that the bound does not consider the

specific structure of the problem and only takes the degree of the polynomials describing

the feasible state-action frequencies into account. Here, we provide a tighter bound on

the number of critical points for numb controllers with two actions. Our proof relies on

the expression of the reward function as a rational function and does not easily generalize

to larger problems. We offer an alternative argument based on polar degrees that we

believe could be extended to the general case of deterministic observations.

Let us begin by evaluating the bound from Theorem 3.41 for the case of one observation

and two actions. In this case the policy polytope is equivalent to the line segment

Δ𝒜 � [0, 1] and hence there are two zero dimensional and one full dimensional face. On

the full dimensional face the bound evaluates to 𝑛𝒮2
𝑛𝒮−1

, which is (essentially) exponential

in the size of the state space. This can be improved to the following linear bound.

Proposition 3.42. Let (𝒮 ,𝒪 ,𝒜 , 𝛼, 𝛽, 𝑟) be a POMDP describing a numb controller with two
actions, i.e., 𝒪 = {𝑜} and 𝒜 = {𝑎1 , 𝑎2} and let 𝛾 ∈ [0, 1). Then the reward function 𝑅 has at
most 2𝑛𝒮 − 2 isolated critical points in the interior int(Δ𝒪𝒜) � (0, 1) of the policy polytope and
hence at most 2𝑛𝒮 isolated critical points.

Proof. We associate the policy polytope Δ𝒪𝒜 with [0, 1] and for 𝑝 ∈ [0, 1] we write 𝜋𝑝
and 𝜂𝑝 for the associated policy and the state-action frequency. From Theorem 2.25 we

know that the reward function 𝑅 = 𝑓 /𝑔 : [0, 1] → R is a rational function of degree at

most 𝑘 B 𝑛𝒮 . The critical points of this function satisfy 𝑓 ′(𝑝)𝑔(𝑝) − 𝑔′(𝑝) 𝑓 (𝑝) = 0. It

is immediate that the degree of ℎ B 𝑓 ′𝑔 − 𝑔′ 𝑓 is at most 2𝑘 − 1. However, writing

𝑓 (𝑝) = ∑𝑘
𝑖=0

𝑐𝑖𝑝
𝑖 , 𝑔(𝑝) = ∑𝑘

𝑖=0
𝑑𝑖𝑝

𝑖
we obtain

ℎ(𝑝) =
2𝑘−1∑
𝑙=0

©«
𝑘−1∑
𝑖=0

𝑐𝑖+1𝑑𝑙−𝑖 −
𝑘−1∑
𝑗=0

𝑐𝑙−𝑗𝑑 𝑗+1

ª®¬ 𝑝 𝑙
and see that the coefficient of 𝑝2𝑘−1

cancels. Since ℎ has at most deg(ℎ) ≤ 2𝑘 − 2 isolated

roots this shows that there are at most 2𝑘−2 isolated critical points of the reward function

in the interior (0, 1). □

The proof given above does not easily generalize to arbitrarily many actions and ob-

servations. Thus, we provide a different ansatz that could potentially be generalized to

deterministic observations. If 𝑝𝑘+1 , . . . , 𝑝𝑚 are affine linear and 𝑝1 , . . . , 𝑝𝑘 are homoge-

neous polynomials then the algebraic degree of (3.62) is given by the (𝑚 − 𝑘 − 1)-th polar
degree 𝛿𝑚−𝑘−1(𝒱) of the projective variety

𝒱 B {𝜂 : 𝑝1(𝜂) = · · · = 𝑝𝑘(𝜂) = 0} ⊆ P𝑛−1 ,

see [104, 70, 195]. This relation is particularly useful, since for state-action frequencies

there are always active linear equations as described in (3.6). The polar degrees of certain

interesting cases (Segre-Veronese varieties) have been recently computed by [270] and we

use those formulas and their presentation by [70].

In this case, the combinatorial part is simple, since there are only two zero-dimensional

faces of the state-action frequencies (corresponding to the endpoints of the unit interval)
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and one one-dimensional face (corresponding to the interior of the unit interval). Let us

set

ℒ =

{
𝜂 ∈ R𝒮×𝒜 : ℓ𝑠(𝜂) = 0 for all 𝑠 ∈ 𝒮

}
,

where ℓ𝑠(𝜂) =
∑
𝑎∈𝒜 𝜂𝑠𝑎 − 𝛾

∑
𝑠′∈𝒮 ,𝑎′∈𝒜 𝜂𝑠′𝑎′𝛼(𝑠 |𝑠′, 𝑎′) − (1 − 𝛾)𝜇𝑠 . By Theorem 3.25 the set

of discounted state-action frequencies is given by

𝒩𝛽 = 𝒩 ∩𝒟𝑛𝒮×2

1
= R𝒮×𝒜≥0

∩ ℒ ∩ 𝒟𝑛𝒮×2

1
,

where 𝒟𝑛𝒮×2

1
denotes the determinantal variety of rank one matrices of size 𝑛𝒮 × 2. Like

above, we associate the policy polytope Δ𝒪𝒜 with [0, 1] and for 𝑝 ∈ [0, 1] we write 𝜋𝑝 and

𝜂𝑝 for the associated policy and the state-action frequency. We aim to bound the number

of critical points of the reward function over (0, 1) or equivalently the number of critical

over {𝜂𝑝 : 𝑝 ∈ (0, 1)} if Assumption 3.3 holds. Denoting the state marginal of 𝜂𝑝 with 𝜌
𝑝
𝑠 ,

recall that 𝜂𝑝(𝑎 |𝑠) = 𝜂
𝑝
𝑠𝑎/𝜌

𝑝
𝑠 , we have that

{𝜂𝑝 : 𝑝 ∈ (0, 1)} = {𝜂 ∈ 𝒩𝛽
: 𝜂(𝑎 |𝑠) > 0 for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜}

= {𝜂 ∈ 𝒩𝛽
: 𝜂𝑠𝑎 > 0 for all 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜}

= R𝒮×𝒜>0
∩𝒰 ∩𝒟𝑛𝒮×2

1
.

Thus the number of critical points over {𝜂𝑝 : 𝑝 ∈ (0, 1)} are upper bounded by the number

of critical points on𝒰 ∩𝒟1. Since the co-dimension of ℒ is 𝑛𝒮 , the number of complex

solutions to the KKT conditions over𝒰 ∩𝒟𝑛𝒮×2

1
are given by the (𝑛𝒮 − 1)-th polar degree

𝛿𝑛𝒮−1(𝒟1), which we can compute using the formula presented in [70, Corollary 5.4]. This

yields

𝛿𝑛𝒮−1(𝒟1) =
𝑛𝒮−2𝑛𝒮+𝑛𝒮+1∑

𝑙=0

(−1)𝑙
(
𝑛𝒮 − 𝑙 + 1

2𝑛𝒮 − 𝑛𝒮

)
(𝑛𝒮 − 𝑙)!

©«
∑
𝑖+𝑗=𝑙

(𝑛𝒮
𝑖

)
(𝑛𝒮 − 1 − 𝑖)! ·

(
2

𝑗

)
(2 − 1 − 𝑗)!

ª®¬
=

1∑
𝑙=0

(−1)𝑙
(
𝑛𝒮 − 𝑙 + 1

𝑛𝒮

)
(𝑛𝒮 − 𝑙)!

©«
∑
𝑖+𝑗=𝑙

(𝑛𝒮
𝑖

)
(𝑛𝒮 − 1 − 𝑖)! ·

(
2

𝑗

)
(1 − 𝑗)!

ª®¬
=

(
𝑛𝒮 + 1

𝑛𝒮

)
𝑛𝒮!

( (𝑛𝒮
0

)
(𝑛𝒮 − 1)! ·

(
2

0

)
1!

)
−

(
𝑛𝒮
𝑛𝒮

)
(𝑛𝒮 − 1)!

( (𝑛𝒮
1

)
(𝑛𝒮 − 2)! +

(
2

1

)
(𝑛𝒮 − 1)!

)
= 𝑛𝒮(𝑛𝒮 + 1) − 2 − 𝑛𝒮(𝑛𝒮 − 1)
= 2𝑛𝒮 − 2

and hence obtain the same bound as in Proposition 3.42. We believe that this ansatz

can be extended to cover general deterministic observations, which would yield tighter

bounds compared to Theorem 3.33. For this one would need to study the polar degrees

of the product of determinantal varieties, see Theorem 3.25.

Example 3.43 (An example with multiple smooth and non-smooth critical points). It is

the goal of this example to demonstrate that for a numb controller multiple critical points

can occur in the interior (0, 1) � int(Δ𝒪𝒜) as well as at the two endpoints of [0, 1] � Δ𝒪𝒜 of

the policy polytope. We refer to such points as smooth and non-smooth critical points.

We consider a numb controller with one observation, two actions 𝑎1 , 𝑎2 and three states

𝑠1 , 𝑠2 , 𝑠3 and a deterministic transition kernel 𝛼 and reward described by the graph shown
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𝑠1

𝑠2 𝑠3

𝑎2 , 𝑟 = +1𝑎1 , 𝑟 = −1

𝑎1

𝑎2

𝑎2 , 𝑟 = −1

𝑎1

Figure 3.5. Graph describing the deterministic transition kernel 𝛼 and the

associated instantaneous rewards.

in Figure 3.5. We choose 𝛾 = 0.8 and 𝜇 ∈ Δ𝒮 to be the uniform distribution and plot the

reward function in Figure 3.6. We see that there are two critical points in the interior of

the policy polytope Δ𝒪
𝐴
� [0, 1]. The bound from Proposition 3.42 evaluate to 2𝑛𝒮 − 2 = 4

and therefore it is not tight in this example.

𝜋(𝑎1 |𝑜)

𝑅
(𝜋
)

Figure 3.6. Plot of the reward function; note that there are two critical

points in the interior of the policy polytope Δ𝒪𝒜 � [0, 1].

3.3.5. Outlook. In this section we have studied the number and location of critical

points of the reward function. For this we used the explicit description of the geometry

of the feasible state-action frequencies for invertible and deterministic observation kernel

𝛽 obtained in Section 3.2. This allowed us to employ tools from the theory of polynomial

optimization to obtain upper bounds on the number of critical points on every face of

the policy polytope Δ𝒪𝒜 . We have seen in examples that these bounds are not tight. One

reason for this is that the results used to obtain the upper bounds only consider the degree

but not the specific nature of the polynomial constraints. For the specific case of a numb

controller with two actions obtained an improved bound with only linear dependence on

the size of the state space. Whereas the argument builds on the description of the reward

as a rational function we also provide a second argument based on polar degrees.
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We consider the following questions to be relevant for future research:

• Tighter bounds via polar degrees: We have seen in one particular case the bounds

on the number of critical points can be tightened significantly by working with

polar degrees. A generalization of this approach has the potential to greatly

improve the bounds established in this work.

• Multi-agent problems: Where we have described the feasible state-action fre-

quencies of multi-agent MDPs, the optimization problem arising in multi-agent

problems has not been studied conclusively. In particular, studying the number

of critical points could yield inside into the role of the degree of decentralization

for the algebraic complexity of the problem. In particular, insight regarding the

number of critical points for different degrees of decentralization would be a

valuable contribution.

• Information theoretic objectives: We think that it is useful to study the critical

points for objective functions that are not linear in state-action space. Important

examples for such settings include apprenticeship learning, where the state-

action objective is the Euclidean distance, as well as unsupervised Reinforce-

ment Learning, where the state-action objective is given by certain information

theoretic quantities, for example the entropy [312]. The number of critical points

for these objectives have been studied in the algebraic statistics community un-

der the names Euclidean distance degree (ED degree) [104] and maximum likelihood
degree (ML degree) [68].

3.4 Reward optimization in state-action space (ROSA)

We have seen that the feasible state-action frequencies of a POMDP form a polynomially

constrained subset of the simplex, see Corollary 3.20. This implies that reward optimiza-

tion in POMDPs is equivalent to a polynomially constrained linear objective program,

which can be seen as a extension of the dual linear program associated to fully ob-

servable MDPs to partially observable problems. We refer to this approach as Reward

Optimization in State-Action space (ROSA) and present its pseudo code in Algorithm 3.

The two non-trivial steps in the algorithm are the computation of the defining linear in-

equalities of the effective policy polytope Δ
𝒮 ,𝛽
𝒜 in line 4 and the solution of the constrained

optimization problem in line 6. The defining linear inequalities of Δ
𝒮 ,𝛽
𝒜 can either be

computed relatively simple for injective 𝛽, see Subsection 3.2.2, or algorithmically, e.g.,

by Fourier-Motzkin elimination, block elimination, vertex approaches, and equality set

projection [150].

For the solution of the constrained optimization problem we first use an interior point

method. Further, we solve the critical equations using a polynomial systems solver as well

as a convex SDP relaxation. We find that using an interior point method in state-action

space offers stability benefits to existing methods working with policies. In addition the

numerical algebraic approaches provide globally optimal solutions.

3.4.1. Interior point methods and stability improvements. Here, we investigate the

practical viability of this approach to optimize the reward in POMDPs. We consider

navigation tasks in random mazes of different sizes, for which we solve the constrained
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Algorithm 3 Reward Optimization in State-Action space (ROSA)

Require: 𝛼 ∈ Δ𝒮×𝒜𝒮 , 𝛽 ∈ Δ𝒮𝒪 , 𝛾 ∈ [0, 1), 𝜇 ∈ Δ𝒮
1: for all 𝑠 ∈ 𝒮 do
2: ℓ𝑠(𝜂) ←

∑
𝑎∈𝒜 𝜂𝑠𝑎 − 𝛾

∑
𝑠′∈𝒮 ,𝑎′∈𝒜 𝜂𝑠′𝑎′𝛼(𝑠 |𝑠′, 𝑎′) − (1 − 𝛾)𝜇𝑠

3: end for
4: Compute the defining linear inequalities of Δ

𝒮 ,𝛽
𝒜

5: Compute the defining polynomial inequalities 𝑝𝑖(𝜂) ≥ 0 of𝒩𝛽 ⊲ According to (3.25)

6: 𝜂∗ ← arg max⟨𝑟, 𝜂⟩ sbj to 𝜂 ≥ 0, ℓ𝑠(𝜂) = 0 , 𝑝𝑖(𝜂) ≥ 0

7: 𝑅∗ ← ⟨𝑟, 𝜂∗⟩ ⊲ Evaluate the optimal value

8: 𝜏∗ ← 𝜂∗(·|·) ∈ Δ𝒮𝒜 ⊲ Compute an optimal state policy

9: 𝜋∗ ← solution of 𝛽𝜋 = 𝜏∗ ⊲ Compute an optimal observation policy

return 𝜂∗, 𝑅∗, 𝜋∗ ⊲ maximizer, optimal value, optimal policy

optimization problem using the interior point method Ipopt. Our experiments show

that this can yield significant computational savings compared to several baselines, while

remaining numerically stable across values of 𝛾 where other methods fail.

Baselines: Policy gradients and Bellman constrained programming. A very popular

approach in Reinforcement Learning dating back to [277] are policy gradients methods

that are variants of the gradient descent algorithm. Typically, policies are parametrized

𝜃 ↦→ 𝜋𝜃 and in its simplest form the iterates are given by

𝜃𝑘+1 = 𝜃𝑘 + Δ𝑡 · ∇𝑅(𝜃𝑘),
where Δ𝑡 > 0 is the step size. In our experiments we use tabular softmax policies given

by

𝜋𝜃(𝑎 |𝑜) B
𝑒𝜃𝑜𝑎∑
𝑎′ 𝑒

𝜃𝑜𝑎′
for all 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪

and use limited memory version of the Broyden–Fletcher–Goldfarb–Shanno (L-BFGS),

which is a quasi Newton method. In comparison to a naive policy gradient, we observed

L-BFGS to converge faster. We refer to this approach as direct policy optimization (DPO).

As a second baseline we consider a reformulation of the reward maximization problem

as a quadratically constrained linear program [17] that we refer to as Bellman constrained

programming (BCP), see also Subsection 2.4.5. Recall that 𝑅𝜇(𝜋) = ⟨𝜇, 𝑉𝜋⟩𝒮 for any

policy 𝜋 ∈ Δ𝒪𝒜 and any initial distribution 𝜇 ∈ Δ𝒜 , see (2.9). In the light of the Bellman

equation 𝑉𝜋 = 𝛾𝑝𝜋𝑉𝜋 + (1 − 𝛾)𝑟𝜋, Theorem 2.9, the reward optimization problem (ROP)

is equivalent to the following quadratically constrained linear program

(BCP) maximize ⟨𝜇, 𝑣⟩𝒮 subject to 𝜋 ∈ Δ𝒪𝒜 and 𝑣 = 𝛾𝑝𝜋𝑣 + (1 − 𝛾)𝑟𝜋.
In our experiment we use the interior point method Ipopt to solve (BCP).

Value and policy iteration can not directly be used to when optimizing stochastic

memoryless policies in a POMDP and hence we do not consider these in our experiments.

The regime for 𝛾 → 1 for MDPs. We recall how the complexity of solving fully

observable MDPs depends on the discount factor 𝛾. In fully observable problems, the

iteration complexity of policy gradient methods behaves like 𝑂((1 − 𝛾)−𝜅), where 𝛾 ∈
[0, 1) is the discount factor and 𝜅 ∈ N depends on the specific method [71]. This is
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reminiscent of the Lipschitz constant of the reward function (as a function of the policy),

which behaves like 𝑂((1 − 𝛾)−1), see Corollary 3.13 and Example 3.14. This leads to

increasingly ill-conditioned problems as 𝛾 → 1 and can cause undesired oscillations

during optimization [288]. However, choosing a discount factor close to 1 is desirable

as one often wishes to optimize the mean reward rather than a discounted reward. This

is also required to prevent vanishing policy gradients in sparse reward MDPs, where,

denoting 𝑛𝒮 the number of states, gradients can of order 𝑂(2−𝑛𝒮/2) if 𝛾 ≤ 𝑛𝒮/(𝑛𝒮 + 1) [2].

In principle the ill-conditioning problem can be addressed by introducing an appropriate

metric, as in natural policy gradients or trust region policy optimization, which can be

costly, however.

We have seen that the iteration complexity bounds for value and policy iteration

degrade for 𝛾 → 1 as they scale like 𝑂(log(1 − 𝛾)/𝛾). This is also complemented by a

lower bound of log(1 − 𝛾))/𝛾 for value iteration. In MDPs, the state-action frequencies

form a polytope and hence the reward optimization problem in state-action space becomes

a linear program [93, 154], see also Subsection 2.4.3. This yields a strongly polynomial

algorithmic approach, i.e., does not degrade for 𝛾→ 1 [234].

Overall, the complexity of solving fully observable MDPs in state-action space does not

suffer diverge for 𝛾→ 1. We extend this by empirically showing that reward optimization

in state-action space for POMDPs has similar benefits: We find that using an interior point

method to solve the resulting polynomially constrained optimization problem offers an

efficient approach that does not deteriorate for 𝛾→ 1.

Description and discussion of the experiments. To demonstrate the performance of

ROSA combined with the interior point method Ipopt we test it on navigation problems

in mazes. For this, we generate connected mazes using a random depth first search [196],

see Figure 3.7 for an example of such a maze with 199 states. Then we randomly select

Figure 3.7. Shown is one of the mazes with 199 states that is used in the experiments.

a state as the goal state at which a reward of 𝑛𝒮 is picked up and from which the agent

transitions to a uniform state. For all other states the four possible actions move the agent

right, left, up or down. The agent can only observe the 8 neighboring cells and starts at a

uniform position.

In order to compare the running times of the three approaches, we generate square

mazes of side length 2𝑛 − 1 and 2𝑛2 − 1 states, for 𝑛 = 2, . . . , 10. We solve the POMDPs

for a discount factor of 𝛾 = 0.9999 using ROSA, BCP and DPO for 10
2

different mazes of
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Figure 3.8. Shown is the solution time and cumulative reward obtained

by different methods solving navigation tasks depending on the number

of states; ROSA reaches competitive reward in less time compared to the

other methods.
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Figure 3.9. Shown is the solution time and cumulative reward obtained by

different methods solving navigation tasks depending on discount factor;

ROSA reaches higher reward in competitive time with stability benefits

compared to DPO for 𝛾→ 1.

each size1 and report the mean solution times and achieved rewards as well as their 16%

and 84% quantiles in Figure 3.8. We observe that all three methods achieve comparable

rewards. However, DPO becomes inefficient even for problems of moderate size and the

running time of BCP grows significantly faster compared to ROSA.

To evaluate the performance of ROSA for 𝛾→ 1 we solve 10
2

mazes2 with side length

9 and 49 states for increasing discount factors. We report the average solution times and

achieved reward in Figure 3.8. In the comparison of the rewards, examples where BCP

did not converge are excluded. In these experiments we see that BCP becomes unstable,

whereas the solution time of ROSA appears to be very robust and even decrease for 𝛾→ 1.

In fact, in the solution of (BCP) Ipopt fails to converge to local optimality for about 15%

of all problems with discount factor at least 0.9999.

1For DPO we solved only 20 mazes of each size due to the long solution time.

2For DPO we consider only 30 mazes and 10
2

values of 𝛾.
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Reproducability statement. We provide a Julia [49] implementation of ROSA for

deterministic observations. In general, problem (3.69) can be solved with any constrainted

optimization solver. Our implementation is built on Ipopt, an interior point line search

method [287]. We call Ipopt via the modeling language JuMP in which the constraints are

easy to implement [108]. The implementation is available under https://github.com/m

uellerjohannes/POMDPs-ROSA.

3.4.2. Solution via numerical algebraic approaches. We provide an implementa-

tion that solves the reward optimization problem in state-action space by computing the

critical points via the Karush-Kuhn-Tucker conditions. For this we reduce the combi-

natorial complexity of the problem by focusing on relevant boundary components, see

Theorem 3.39. We implement this approach using numerical algebra methods [63] that

automatically certify the correctness of the results [62]. We use a convex relaxation of the

polynomial problem to certify the global optimality of the results. Moreover, we observe

that in specific instances this numerical algebraic approach leads to superior results when

compared to an interior point method for the solution of the reward optimization prob-

lem in state-action space. Finally, we compare the number of critical points obtained in

numerical experiments with our theoretical bounds obtained in Subsection 3.3.3.

The KKT critical point equations. A standard approach for constrained optimization

problems are the KKT conditions [162], which provide necessary conditions of stationary

points under certain regularity conditions; see, e.g., [1, 48, 41]. If both the constraints and

objective function are polynomial, the KKT conditions form a polynomial system, which

can be solved using various numerical algebraic methods.

Applied to our problem, the KKT conditions reduce to the following polynomial system

in 𝜂 ∈ R𝒮×𝒜≥0
with multipliers 𝜆 ∈ R𝒮 , 𝜈𝑜𝑠𝑎 ∈ R, 𝜅 ∈ R𝒮×𝒜≥0

:

Primal feasibility: ℓ𝑠(𝜂) = 0 for 𝑠 ∈ 𝒮 ,
𝑝𝑜𝑠𝑎(𝜂) = 0 for 𝑜 ∈ 𝒪 , 𝑎 ∈ 𝒜 \ {𝑎𝑜}, 𝑠 ∈ 𝑆𝑜 \ {𝑠𝑜},

Complementary slackness: 𝜅𝑠𝑜 𝑎𝜂𝑠𝑜 𝑎 = 0 for all 𝑠𝑜 , 𝑎,

Stationarity: 𝑟 +
∑
𝑠

𝜆𝑠∇ℓ𝑠(𝜂) +
∑
𝑜,𝑠,𝑎

𝜈𝑜𝑠𝑎∇𝑝𝑜𝑠𝑎(𝜂) + 𝜅 = 0,

(3.73)

where 𝑎𝑜 ∈ 𝒜 and 𝑠𝑜 ∈ 𝑆𝑜 for every 𝑜 ∈ 𝒪 are fixed arbitrarily. Here we have included the

primal feasibility 𝜂𝑠𝑎 ≥ 0 for 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜 and the dual feasibility 𝜅𝑠𝑎 ≥ 0 for 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜
in the definition of the search space for 𝜂 and 𝜅.

The number of linear constraints ℓ𝑠 is 𝑛𝒮 , while the number of polynomial constraints

𝑝𝑜𝑠𝑎 is (𝑛𝒜 − 1)∑𝑜∈𝒪(𝑑𝑜 − 1) = (𝑛𝒜 − 1)(𝑛𝒮 − 𝑛𝒪). Due to the symmetry of the effective

policies, there are only 𝑛𝒪𝑛𝒜 inequalities, 𝜂𝑠𝑜 𝑎 ≥ 0 for each 𝑎 ∈ 𝒜 , 𝑜 ∈ 𝒪. Hence the

dimension of the square KKT system (3.73) is

𝑛𝒮𝑛𝒜 + 𝑛𝒮 + (𝑛𝒜 − 1)(𝑛𝒮 − 𝑛𝒪) + 𝑛𝒪𝑛𝒜 = 2𝑛𝒮𝑛𝒜 + 𝑛𝒪 .

In this setting, we can verify that the linear independence constraint qualification is

satisfied. Given an element 𝜂∗ in the feasible set 𝒩𝛽
, it suffices to verify the linear inde-

pendence of the gradients of the active inequality constraint functions and the equality

constraint functions at 𝜂∗. Notice that under the pullback along the birational morphism
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Ψ−1
the equality constraints in (3.35) are identified with the affine-linear functions 𝑙𝑜𝑠𝑎 de-

fined in the proof of Theorem 3.25. Checking the linear independence of their gradients

can be done by counting the dimension of the faces.

The Lagrange critical point equations over boundary components. Alternatively to

solving the KKT system, one can compute the critical equations given by the Lagrange

criterion over every boundary component individually. If there are no inequality con-

straints, the KKT equations specialize to the Lagrange multiplier equations. Consider a

boundary component 𝐵 in (3.71) for a choice of 𝐴𝑜 ⊊ 𝒜 for every 𝑜 ∈ 𝒪, and consider the

optimization problem over 𝐵. This amounts to setting 𝜂(𝑠, 𝑎) = 0 for 𝑎 ∈ 𝐴𝑜 whenever

𝑔𝛽(𝑠) = 𝑜, 𝑜 ∈ 𝒪, which reduces optimization to a subspace of R𝒮×𝒜 . We denote the new

primal variables by �̂�. Similarly, we denote the restriction of ℓ𝑠 and 𝑝𝑜𝑠𝑎 to this space by ℓ̂𝑠
and �̂�𝑜𝑠𝑎 and the projection of 𝑟 onto this space (i.e., the vector obtained by dropping the

indices, which are set to zero in 𝜂) by 𝑟. In the lower dimensional variables �̂� for a given

𝐵 the Lagrange system becomes

Feasibility: ℓ̂𝑠(�̂�) = 0 for 𝑠 ∈ 𝒮 ,
�̂�𝑜𝑠𝑎(�̂�) = 0 for 𝑜 ∈ 𝒪 , 𝑎 ∈ 𝒜 \ {𝑎𝑜}, 𝑠 ∈ 𝑆𝑜 \ {𝑠𝑜},

Stationarity: 𝑟 +
∑
𝑠

𝜆𝑠∇ℓ̂𝑠(�̂�) +
∑
𝑜,𝑠,𝑎

𝜈𝑜𝑠𝑎∇�̂�𝑜𝑠𝑎(�̂�) = 0,

(3.74)

where 𝑎𝑜 ∈ 𝐴𝑐𝑜 and 𝑠𝑜 ∈ 𝑆𝑜 are fixed arbitrarily for every 𝑜 ∈ 𝒪. The dimension of the

primal variable �̂� is 𝑛𝒮𝑛𝒜 −
∑
𝑜 𝑑𝑜 |𝐴𝑜 |, the dimension of the Lagrange multipliers 𝜆 is 𝑛𝒮

and of 𝜈𝑜𝑠𝑎 is

∑
𝑜(𝑑𝑜 −1)(|𝐴𝑐𝑜 | −1), see also the proof of Theorem 3.41. Overall, the Lagrange

system (3.74) is a square polynomial system of dimension

2𝑛𝒮𝑛𝒜 − (𝑛𝒜 − 1)𝑛𝒪 −
∑
𝑜

(2𝑑𝑜 − 1)|𝐴𝑜 |.

Note that we have discussed the relation between the solutions of the Lagrange equa-

tions and the KKT system in Section 3.3.

Description of the experiments. We test our computational approach on random

POMDPs of different sizes with deterministic observations. To this end, we first specify

the number of states 𝑛𝒮 , the number of actions 𝑛𝒜 , and the number of states aggregated

in each observation (𝑑𝑜)𝑜∈𝒪 with

∑
𝑜 𝑑𝑜 = 𝑛𝒮 . For each specification of these values,

we generate 20 random problems as follows. We sample the initial state distribution

𝜇 and the transition probabilities 𝛼(·|𝑠, 𝑎), (𝑠, 𝑎) ∈ 𝒮 × 𝒜 from a symmetric Dirichlet

distribution, and sample the instantaneous reward vector 𝑟 ∈ R𝒮×𝒜 from a standard

Gaussian distribution. We use the same random data for both approaches, KKT and

Lagrange over boundary components.

Computation. The optimization problem (3.69) can be solved using several methods:

• First, we use the numerical algebra package HomotopyContinuation.jl [63] to

solve the KKT system (3.73) and the Lagrange system (3.74) of each boundary

component. This automatically certifies the results [62], meaning that for every

returned solution, a unique true solution is guaranteed in a small neighborhood.

From the returned solutions to the critical equations, we then just need to select
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the real ones that satisfy the primal inequality constraints 𝜂𝑠,𝑎 ≥ 0, and among

them the one that has the maximum objective value.

• Alternatively, we solve a convex relaxation of the polynomial optimization prob-

lem (3.69). Namely, we relax the problem to a semidefinite program (SDP) via the

moment-SOS-approach that is implemented in the freeware GloptiPoly3 [133],

and solve the SDPs using the numerical solver Mosek; see [82] for details. We

note that GloptiPoly3 builds upon a hierarchy of moment/SOS programs (also

called Lasserre hierarchy), which allows to approximate the optimal value arbi-

trarily close, and can be used to test optimality and extract global optimizers [134,

220]. We use this key feature to check if our methods reach global optimality.

• We may also solve the optimization problem (3.69) using the interior point

solver Ipopt [287], which is a local optimization method for large-scale nonlinear

optimization, an approach recently pursued in [210], see also Subsection 3.4.1.

𝑛𝒮 𝑛𝒜 (𝑑𝑜)𝑜∈𝒪
KKT Lagrange (all) Lagrange (relevant)

complex real positive complex real positive complex real positive

3 2

(3) 6±0 4.4±1.2 2.1±0.3 6±0 4.4±1.2 2.1±0.3 6±0 4.4±1.2 2.1±0.3

(2,1) 12±0 10.1±1.9 4.25±0.44 10±0 8.2±1.9 4.25±0.44 8±0 6.7±1.6 4.25±0.44

(1,1,1) 20±0 20±0 8±0 8±0 8±0 8±0 8±0 8±0 8±0

4 3

(4) 45±0 17.1±4.3 4.3±1.3 45±0 17.1±4.3 4.3±1.3 45±0 17.1±4.3 4.3±1.3

(3,1) 150±0 79±11 11±1.9 129±0 68.7±9.7 11±1.9 81±0 41.6±8.5 10.9±1.8

(2,2) 281.6±0.75 154±16 13.9±4.7 263±0 136±16 13.9±4.7 153±0 89±10 13.65±4.3

(2,1,1) 381.2±0.7 292±23 31.5±4.3 216±0 168±16 31.5±4.3 81±0 68±11 30.9±4.0

(1,1,1,1) 495±0 495±0 81±0 81±0 81±0 81±0 81±0 81±0 81±0

5 3

(5) 71±0 21.4±6 3.7±0.98 71±0 21.4±6 3.7±0.98 71±0 21.4±6 3.7±0.98

(3,2) 637.95±0.76 219±28 12.60±2.9 626±0 213±29 12.6±2.9 477±0 171±24 12.6±2.9

(4,1) 269.85±0.49 99±20 11.9±3.3 234±0 87±18 11.9±3.3 144±0 52±13 11.55±2.6

(3,1,1) 881.95±0.22 436±68 36±10 558±0 285±47 36±10 243±0 117±20 35.3±9.2

(2,2,1) 1717.3±2.5 890±49 35.6±5.3 1260±0 624±56 36.5±7.1 459±0 244±25 35.7±6.6

(2,1,1,1) 2269.9±3.9 1712±142 89±12 810±0 624±74 89.3±12.3 243±0 195±37 88.1±9.5

(1,1,1,1,1) 3002.9±0.31 3002.9±0.3 243±0 243±0 243±0 243±0 243±0 243±0 243±0

Table 3.3. Mean and standard deviation of the number of solutions

of the KKT system (3.73), the Lagrange system (3.74) over all boundary

components, and the Lagrange system over the relevant boundary com-

ponents, for 20 random POMDPs with the indicated number of states 𝑛𝒮 ,

actions 𝑛𝒜 , and state-aggregation partition (𝑑𝑜)𝑜∈𝒪 . In our setting, positive

solutions are feasible solutions.

Discussion of the results. In this section, we discuss the experimental results on the

number of solutions obtained by solving the KKT and Lagrange systems introduced

above. In Table 3.3, we report the average and standard deviation of the number of

complex, real, and positive solutions returned in each case. Note that in our setting,

positive solutions (i.e., solutions satisfying 𝜂 ≥ 0) are (primal) feasible solutions. We also

compare these methods’ performance and computational times with convex relaxations

and interior point methods.
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We start by comparing the number of solutions of the KKT and the Lagrange systems.

In Table 3.3 we see that the KKT system has at least as many complex solutions as the

Lagrange systems over all boundary components. This is consistent with our previous

discussion, since, as we have pointed out, any solution of the Lagrange system over

a boundary component is a solution of KKT. Moreover, KKT and Lagrange over all

boundary components generally have the same number of positive, i.e., primal feasible,

solutions, see (3.63) and Figure 3.4.

The difference between the number of complex, real, and positive solutions is also

worth noting. Table 3.3 reveals a drop between the number of complex solutions and the

number of real and positive solutions of the three types of systems. We find an exception

to this in the Lagrange system for fully observable systems (𝑑𝑜 = (1, . . . , 1)), where the

number of complex, real, and positive solutions coincide. In this case all boundary

components are affine spaces, so only the zero-dimensional boundary components have

a solution, and these correspond to the 𝑛
𝑛𝒮
𝒜 vertices of the feasible set.

We also observe that the number of complex solutions has a much smaller variance

than the number of real or positive ones. This is expected, since choosing the coefficients

of polynomial systems randomly gives the same number of complex solutions with prob-

ability one. In fact, the number of complex solutions for the Lagrange system has no

variance across the different random parameters. Still, we see a small variance in the

number of complex KKT solutions, which we attribute to numerical instability: this can

prevent the software package HomotopyContinuation.jl from finding all solutions to

the KKT system. In contrast to the complex case, the variance on the number of real and

positive solutions is not due to numerical errors. This is a typical phenomenon in poly-

nomial system solving and is one of the possible limitations of classic algebraic methods

when one wants to estimate the number of real solutions of a system.

In the following we compare the experimental results presented in Table 3.3 with the

theoretical upper bounds shown in Table 3.2 and highlight two particular facts. First

notice that in most cases the theoretical bound is significantly larger than the number of

solutions of the Lagrange system. Moreover, this gap becomes particularly pronounced

for problems where the fibers of 𝑔𝛽 are large. This indicates that there is a discrepancy

between the theoretical bounds and the algebraic degree of the optimization problem.

Indeed, our bounds are based on the theory for generic polynomials. Hence, we do

not expect that they provide a tight estimate of the algebraic degree for the particular

polynomials we are dealing with. Here we also observe a particular behavior in the case

of fully observable systems where the number of critical points of the Lagrange systems

agrees with our bounds. On the other hand, we see that in some cases the number of

solutions of KKT is larger than the bound, which agrees with our discussion on solutions

of KKT and Lagrange systems in (3.63).

In addition to analyzing the number of solutions of the KKT and Lagrange systems,

we are interested in comparing the different solution methods for the optimization prob-

lem. Therefore, we compare the optimal solution found by solving these systems with

HomotopyContinuation.jl with the one found by Ipopt and GloptiPoly3. Although

HomotopyContinuation.jl is not guaranteed to find all solutions to the KKT and La-

grange systems, we observe that this approach yields a reward that is at least as high as

the one obtained by the interior point method Ipopt and, in a few instances, strictly higher.
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In fact, solving the optimization problem with GloptiPoly3 returns a certificate for the

optimality of the result, which in all computed instances coincides with the optimal value

obtained by solving the KKT and Lagrange systems with HomotopyContinuation.jl.

That is, GloptiPoly3 offers numerical evidence that they always provide globally opti-

mal solutions. In all computed instances using GloptiPoly3, the optimal value of the

optimization problem was already attained at the first-order relaxation of the Lasserre

hierarchy [148]. We conjecture that objective value exactness for the first order relaxation

of (3.69) holds with high probability for generic input data. Since the size of the SDP

depends very sensitively on the order of the relaxation, this conjecture would remedy

one of the major drawbacks of the SDP relaxation method. In more detail, the 𝑡-th order

relaxation for both, the moment and the SOS relaxation of a polynomial optimization

problem, can be computed via an SDP of size

(𝑛+𝑡
𝑡

)
, where 𝑛 is the number of variables of

the involved polynomials.

As described in [220], finite convergence of the Lasserre hierarchy, i.e., convergence

after finitely many relaxation steps, is closely related to certifying the flat truncation

property. In fact, finite convergence holds generically [219]. However, studying exactness

properties of the SOS and the moment relaxation is still an ongoing topic of current

research, see e.g. [32].

Finally, in Table 3.4 we report the computation times of the different approaches. The

KKT and Lagrange systems as well as Ipopt were computed on a server with a 2x 32-Core

AMD Epyc 7601 at 2.2 GHz and 1024 GB RAM, whereas the SDP relaxation was computed

on a Intel(R) Core(TM) i7-8550U CPU with 4 cores at 1.8 GHz and 16GB RAM. Solving the

Lagrange equations only over the relevant boundary components was up to two orders of

magnitude faster than solving them over all boundary components. The improvements

are more pronounced when 𝑔𝛽 has small fibers in which we can exclude more faces by

means of Theorem 3.39; see also Table 3.2. The computation times for the solution of the

KKT system are in the same order to magnitude as the computation time of the solution

of the Lagrange systems over all boundary components. KKT is slightly faster when 𝑔𝛽
has small fibers and slightly slower when 𝑔𝛽 has large fibers. The SDP approach is several

orders of magnitude faster compared to the solution of the KKT and Lagrange systems

with the gap becoming more pronounced for problems of increasing size. The interior

point method Ipopt is again several orders of magnitude faster. Ipopt and SDP return

one candidate solution, whereas homotopy continuation attempts to return all critical

points. Note however that in contrast to the SDP relaxation the interior point method

only guarantees locally optimal solutions. In our experiments we consistently observed

that Ipopt yields less accurate solutions and sometimes converges to suboptimal points.

The maximum difference of the reward obtained by Ipopt and SDP is 9.7×10
−2

, where the

maximum difference between either of KKT and Lagrange methods and SDP is 3.0×10
−7

.

Reproducibility statement. The computer code for our experiments is publicly avail-

able at https://github.com/marinagarrote/Algebraic-Optimization-of-Sequent

ial-Decision-Rules. We conducted our experiments using Julia [49] version 1.7.0, an

open source programming language under the MIT license. We used the Julia package

HomotopyContinuation.jl version 2.6.3, which is freely available for personal use under
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Partitions

of 𝑛𝒮
Ipopt SDP KKT

Lagrange

(all)

Lagrange

(relevant)

𝑛𝒮 = 3, 𝑛𝒜 = 2

(3) 0.01 0.213 1.575 0.046 1.175

(2,1) 0.009 0.168 1.551 3.563 2.757

(1,1,1) 0.006 0.171 0.114 0.119 0.03

𝑛𝒮 = 4, 𝑛𝒜 = 3

(4) 0.011 1.167 19.885 7.642 10.407

(3,1) 0.01 1.114 76.071 43.759 22.17

(2,2) 0.011 1.278 173.644 114.208 48.52

(2,1,1) 0.009 1.292 79.775 191.394 27.004

(1,1,1,1) 0.007 1.184 13.82 32.637 0.693

𝑛𝒮 = 5, 𝑛𝒜 = 3

(5) 0.011 7.394 62.321 31.257 31.501

(3,2) 0.01 6.338 1768.722 509.877 259.054

(4,1) 0.011 7.256 307.524 163.88 69.5

(3,1,1) 0.01 6.608 895.701 704.813 91.901

(2,2,1) 0.011 6.078 2831.482 2175.098 313.557

(2,1,1,1) 0.009 6.22 899.981 2058.912 188.536

(1,1,1,1,1) 0.006 5.159 172.621 319.165 3.667

Table 3.4. Average run times for the different approaches reported in

seconds. KKT and Lagrange are computed with homotopy continuation.

the MIT license, and Ipopt.jl version 0.7.0, which is a Julia interface to the COIN-OR non-

linear solver Ipopt available under the EPL (Eclipse Public License) open-source license.

The convex relaxation is computed via the freeware GloptiPoly3 implemented in Matlab,

for which there also exists an Octave implementation.

3.4.3. Conclusion and outlook. In this section we have presented potential benefits

of reward optimization in state-action space (ROSA) over methods working directly with

policies or parametrizations of policies. First, we have seen that solving the resulting

polynomially constrained linear objective problem with the interior point method Ipopt

remains effective for 𝛾→ 1, which is in contrast to existing approaches.

Further, we employed numerical algebraic approaches to solve the polynomial opti-

mization problem. For this we considered KKT equations and the Lagrange system over

individual boundary components, where we leveraged knowledge about the location of

maximizers on lower dimensional boundary components. The relatively small number

of solutions observed in the experiments indicate that there is room for refining the the-

ory either to obtain tighter estimates of the algebraic degree or also tighter descriptions

of the possible number of feasible solutions. Using a convex relaxation to an SDP we

obtained empirical evidence that our approach of solving the critical equations provides

global maximizers of the reward. This is in strong contrast to naive gradient optimization,

which yields only locally optimal solutions for this problem. In our experiments, the first

order relaxation produced exact objective values.

We highlight the following questions that arose during our analysis:

• Exactness of SDP relaxations: In our experiments, we observed that the sequence

of convex relaxations given by the moment-SOS hierarchy provided exact global
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solutions in the first order relaxation. We believe that this observation deserves

a closer theoretical analysis.

• Riemannian optimization for POMDPs: Our description of the state-action fre-

quencies of POMDPs with deterministic observations via products of varieties

of rank one matrices in sTheorem 3.25 could provide a starting point for a Rie-

mannian optimization technique for POMDPs.

• Reinforcement learning: In this thesis we study the planning problem in MDPs,

i.e., assume knowledge of the Markov decision process and it is a central question

to understand how reinforcement learning can benefit our insights.
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CHAPTER 4

Geometry and convergence of natural policy gradient methods

So far we have studied the geometry of partial observability and have seen that partial

observability induces polynomial constraints on the feasible state-action frequencies of a

Markov decision process. In this chapter, we study the geometry of several natural policy

gradient (NPG) methods in infinite-horizon discounted fully observable Markov decision

processes with regular policy parametrizations. We model the policy 𝜋𝜃 as a differen-

tiably parametrized element in the polytope Δ𝒮𝒜 of conditional probability distributions

of actions given states, with 𝜋𝜃(𝑎 |𝑠) specifying the probability of selecting action 𝑎 ∈ 𝒜
when currently in state 𝑠 ∈ 𝒮, for the parameter value 𝜃. It is the goal to maximizer the

reward function 𝑅(𝜃) = 𝑅(𝜋𝜃) and we study gradient-based policy optimization methods

and more specifically natural policy gradient (NPG) methods. Inspired by the seminal

works of Amari [13, 16], various NPG methods have been proposed [153, 206, 208]. In

general, they take the form

𝜃𝑘+1 = 𝜃𝑘 + Δ𝑡 · 𝐺(𝜃𝑘)+∇𝑅(𝜃𝑘),

whereΔ𝑡 > 0 denotes the step size,𝐺(𝜃)+ denotes the Moore-Penrose inverse and𝐺(𝜃)𝑖 𝑗 =
𝑔(𝑑𝑃𝜃𝑒𝑖 , 𝑑𝑃𝜃𝑒 𝑗) is a Gram matrix defined with respect to some Riemannian metric 𝑔 and

some representation 𝑃(𝜃) of the parameter. Most of our analysis does not actually depend

on the specific choice of the pseudoinverse, but in Section 4.4 we will use the Moore-

Penrose inverse. The most traditional natural gradient method is the special case where

𝑃(𝜃) is a probability distribution and 𝑔 is the Fisher information in the corresponding

space of probability distributions. However, the terminology may be used more generally

to refer to a Riemannian gradient method where the metric is in some sense natural.

Kakade [153] proposed using 𝑃(𝜃) = 𝜋𝜃 and taking for 𝑔 a product of Fisher metrics

weighted by the state frequencies resulting from running the Markov process with policy

𝜋𝜃. Although this is a natural choice for 𝑃, the choice of a Riemannian metric on Δ𝒮𝒜
is a non trivial problem. Peters et al. as well as Bagnell and Schneider [232, 28] offered

an interpretation of Kakade’s metric as the limit of Fisher metrics defined on the finite

horizon path measures, but other choices of the weights can be motivated by axiomatic

approaches to defining a Fisher metric of conditional probabilities [169, 205]. From our

perspective, a main difficulty is that it is not clear how to choose a Riemannian metric on

Δ𝒮𝒜 that interacts nicely with the objective function 𝑅(𝜋), which is a non-convex rational

function of 𝜋 ∈ Δ𝒮𝒜 . An alternative choice for 𝑃(𝜃) is the vector of state-action frequencies

𝜂𝜃, whose components 𝜂𝜃(𝑠, 𝑎) are the probabilities of state-action pairs (𝑠, 𝑎) ∈ 𝒮 × 𝒜
resulting from running the Markov process with policy𝜋𝜃. Morimura et al. [206] proposed

using 𝑃(𝜃) = 𝜂𝜃 and the Fisher information on the state-action probability simplex Δ𝒮×𝒜
as a Riemannian metric. We will study both approaches and variants from the perspective

of Hessian geometry.
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Contributions. We study the natural policy gradient dynamics inside the polytope𝒩
of state-action frequencies, which provides a unified treatment of several existing NPG

methods. We focus on finite state and action spaces and the expected infinite-horizon

discounted reward optimized over the set of memoryless stochastic policies. For an

overview of the convergence rates established in this work see Table 4.1 in Section 4.5

where our main contributions can be summarized as follows:

• We show that the dynamics of Kakade’s NPG and Morimura’s NPG solve a

gradient flow in 𝒩 with respect to the Hessian geometries of conditional en-

tropic and entropic regularization of the reward (Sections 4.2.2 and 4.2.3 and

Proposition 4.13).

• Leveraging results on gradient flows in Hessian geometries, we derive linear

convergence rates for Kakade’s and Morimura’s NPG flow for the unregularized

reward, which is a linear and hence not strictly concave function in state-action

space, and also for the regularized reward (Theorems 4.26 and 4.27 and Corol-

laries 4.33 and 4.34).

• Further, for a class of NPG methods, which correspond to 𝛽-divergences and

which generalize Morimura’s NPG, we show sub-linear convergence in the un-

regularized case and linear convergence in the regularized case (Theorem 4.27

and Corollary 4.34, respectively).

• We complement our theoretical analysis with experimental evaluation, which

indicates that the established linear and sub-linear rates for unregularized prob-

lems are essentially tight.

• For discrete-time gradient optimization, our ansatz in state-action space yields

an interpretation of the regularized NPG method as an inexact Newton iteration

if the step size is equal to the inverse regularization strength. This yields a

relatively short proof for the local quadratic convergence of regularized NPG

methods with Newton step sizes (Theorem 4.36). This recovers as a special

case the local quadratic convergence of Kakade’s NPG under state-wise entropy

regularization previously obtained in [71].

Related work. The application of natural gradients to optimization in MDPs was first

proposed by Kakade [153], taking as a metric on Δ𝒮𝒜 =
∏

𝑠∈𝒮 Δ𝒜 the product of Fisher

metrics on the individual components Δ𝑠𝒜 � Δ𝒜 , 𝑠 ∈ 𝒮, weighted by the stationary state

distribution. The relation of this metric to finite-horizon Fisher information matrices was

studied by Bagnell and Schneider [28] as well as by Peters et al. [232]. Later, Morimura et

al. [206] proposed a natural gradient using the Fisher metric on the state-action frequen-

cies, which are probability distributions over states and actions.

There has been a growing number of works studying the convergence properties

of policy gradient methods. It is well known that reward optimization in MDPs is a

challenging problem, where both the non-convexity of the objective function with respect

to the policy and the particular parametrization of the policies can lead to the existence

of suboptimal critical points [50]. Global convergence guarantees of gradient methods

require assumptions on the parametrization. Most of the existing results are formulated

for tabular softmax policies, but more general sufficient criteria have been given in [50,

316, 317].
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Vanilla PGs have been shown to converge sublinearly at rate 𝑂(𝑡−1) for the unreg-

ularized reward and linearly for entropically regularized reward. For unregularized

problems, the convergence rate can be improved to a linear rate by normalization [200,

199]. For continuous state and action spaces, vanilla PG converges linearly for entropic

regularization and shallow policy networks in the mean-field regime [168].

For Kakade’s NPG, [2] established sublinear convergence rate𝑂(𝑡−1) for unregularized

problems, and the result has been improved to a linear rate of convergence for step sizes

found by exact line search [51], constant step sizes [156, 6, 311], and for geometrically

increasing step sizes [305, 7]. For regularized problems, the method converges linearly

for small step sizes and locally quadratically for Newton-like step size [71, 172]. These

results have been extended to more general frameworks using state-mixtures of Bregman

divergences on the policy polytope [165, 315, 172, 7], which however do not include

NPG methods defined in state-action space such as Morimura’s NPG. For projected PGs,

[2] shows sublinear convergence at a rate 𝑂(𝑡−1/2), and the result has been improved to a

sublinear rate𝑂(𝑡−1) [305], and to a linear rate for step sizes chosen by exact line search [51].

Apart from the works on convergence rates for policy gradient methods for standard

MDPs, a primal-dual NPG method with sublinear global convergence guarantees has

been proposed for constrained MDPs [98, 97]. For partially observable systems, a gradient

domination property has been established in [26]. NPG methods with dimension-free

global convergence guarantees have been studied for multi-agent MDPs and potential

games [5]. The sample complexity of a Bregman policy gradient arising from a strongly

convex function in parameter space has been studied in [143]. For the linear quadratic

regulator, global linear convergence guarantees for vanilla, Gauss-Newton and Kakade’s

natural policy gradient methods are provided in [113]; this setting is different to reward

optimization in MDPs, where the objective at a fixed time is linear and not quadratic. A

lower bound of 𝑂(Δ𝑡−1 |𝒮|2Ω((1−𝛾)
−1)) on the iteration complexity for softmax PG method

with step size Δ𝑡 has been established in [171].

4.1 Natural gradients

In this section we provide some background on the concept of natural gradients.

4.1.1. Definition and general properties of natural gradients. In many applica-

tions, one aims to optimize a model parameter 𝜃 with respect to an objective function

ℓ that is defined on a model space ℳ, as illustrated in Figure 4.1. This general setup,

with an objective function that factorizes as 𝐿(𝜃) = ℓ (𝑃(𝜃)), covers parameter estima-

tion and supervised learning cases, and also problems such as the numerical solution of

PDEs with neural networks or policy optimization in MDPs and reinforcement learning.

Naively, the optimization problem can be approached with first order methods, comput-

ing the gradients in parameter space with respect to the Euclidean geometry. However,

this neglects the geometry of the parametrized modelℳΘ = 𝑃(Θ), which is often seen

as a disadvantage since it may lead to parametrization-dependent plateaus in the opti-

mization landscape. At the same time, the biases that particular parametrizations can

introduce into the optimization can be favorable in some cases. This is an active topic of

investigation particularly in deep learning, where 𝑃 is often a highly non-linear function
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Parameter

space Θ ⊆ R𝑝
Model

spaceℳ𝑃

Reals R

ℓ
𝐿

Figure 4.1. Schematic drawing of parametric models with an objective

function ℓ and resulting parameter objective function 𝐿; note that neither

the choice of geometry in the model space nor the factorization or the

model space itself is uniquely determined by the objective function 𝐿.

of 𝜃. At any rate, there is a good motivation to study of the effects of the parametrization

and the possible advantages from incorporating the geometry of model space into the

optimization procedure in parameter space.

The natural gradient as introduced in [13] is a way to incorporate the geometry of the

model space into the optimization procedure and to formulate iterative update directions

that are invariant under reparametrizations. Although it has been most commonly applied

in the context of parameter estimation under the maximum likelihood criterion, the

concept of natural gradient has been formulated for general parametric optimization

problems and in combination with arbitrary geometries. In particular, natural gradients

have been applied to neural network training [229, 193, 95, 146], policy optimization [153,

232, 206] and inverse problems [223]. Especially in the latter case, different notions of

natural gradients have been introduced. A version that incorporates the geometry of the

sample space are natural gradients based on an optimal transport geometry in model

space [175, 188, 18]. We shall discuss natural gradients in a way that emphasizes that

even for a specific problem there may not be a unique natural gradient. This is because

both the factorization 𝐿(𝜃) = ℓ (𝑃(𝜃)) of the objective as well as what should be considered

a natural geometry in model space may not be unique.

But what is it that makes a gradient or update direction natural? The general consensus

is that it should be invariant under reparametrization to prevent artificial plateaus and

provide consistent stopping criteria, and it should (approximately) correspond to a gra-

dient update with respect to the geometry in the model space. We now give the formal

definition of the natural gradient with respect to a given factorization and a geometry

in model space that we adopt in this work, which can be shown to satisfy the desired

properties.

Definition 4.1 (General natural gradient). Consider the problem of optimizing an objective

𝐿 : Θ → R, where the parameter space Θ ⊆ R𝑝 is an open subset. Further, assume that

the objective factorizes as 𝐿 = ℓ ◦𝑃, where 𝑃 : Θ→ℳ is a model parametrization withℳ a

Riemannian manifold with Riemannian metric 𝑔, and ℓ : ℳ → R is a loss in model space, as

shown in Figure 4.1. For 𝜃 ∈ Θ we define the Gram matrix 𝐺(𝜃)𝑖 𝑗 B 𝑔𝑃(𝜃)(𝑑𝑃𝜃𝑒𝑖 , 𝑑𝑃𝜃𝑒 𝑗)
and call ∇𝑁𝐿(𝜃) B 𝐺(𝜃)+∇𝐿(𝜃) the natural gradient (NG) of 𝐿 at 𝜃 with respect to the
factorization 𝐿 = ℓ ◦ 𝑃 and the metric 𝑔.
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Natural gradient as best improvement direction. Let us consider a parametrization

𝑃 : Θ → ℳ with image ℳΘ = 𝑃(Θ), where ℳ is a Riemannian manifold with metric

𝑔. Let us fix a parameter 𝜃 ∈ Θ and set 𝑝 B 𝑃(𝜃). Moving into the direction 𝑣 ∈ R𝑝
in the parameter space results in moving in the direction 𝑤 = 𝑑𝑃𝜃𝑣 ∈ 𝑇𝑝ℳ in model

space. The space of all directions that can result in this way is the generalized tangent
space 𝑇𝜃ℳΘ B range(𝑑𝜃𝑃) ⊆ 𝑇𝑝ℳ. Hence, the best direction one can take on ℳΘ by

infinitesimally varying the parameter 𝜃 is given by

arg max

𝑤∈𝑇𝜃ℳΘ ,𝑔𝑝(𝑤,𝑤)=1

𝜕𝑤ℓ (𝑝),

which is equal (up to normalization) to the projection Π𝑇𝜃ℳΘ
(∇𝑔ℓ (𝑝)) of the Riemannian

gradient ∇𝑔ℓ (𝑝) onto 𝑇𝜃ℳΘ. Moving in the direction of the natural gradient in parameter

space results in the optimal update direction over the generalized tangent space 𝑇𝜃ℳΘ in

model space.

Theorem 4.2 (Natural gradient leads to steepest descent in model space). Consider the
settings of Definition 4.1, whereℳ is a Riemannian manifold with metric 𝑔 and enote the natural
gradient with respect to this factorization by ∇𝑁𝐿(𝜃) = 𝐺(𝜃)+∇𝜃𝐿(𝜃). Then it holds that

𝑑𝑃𝜃(∇𝑁𝐿(𝜃)) = Π𝑇𝜃ℳΘ
(∇𝑔ℓ (𝑃(𝜃))).

For invertible Gram matrices 𝐺(𝜃) this result is well known [14, Subsection 12.1.2];

for singular Gram matrices we refer to [226, Theorem 1] and provide a proof for Hilbert

spaces in Chapter 6.

4.1.2. Choice of a geometry in model space. Neither the factorization of the objective

function nor the choice of the geometry in the model space is unique. Here, we discuss

different approaches for the choice of the geometry in the model space.

Invariance axiomatic geometries. A celebrated theorem by Chentsov [72] character-

izes the Fisher metric of statistical manifolds with finite sample spaces as the unique

metric (up to multiplicative constants) that is invariant with respect to congruent embed-

dings by Markov mappings. A generalization of Chentsov’s result for arbitrary sample

spaces was given by Ay et al. [24].

Given two Riemannian manifolds (ℰ , 𝑔), (ℰ′, 𝑔′) and an embedding 𝑓 : ℰ → ℰ′, the

metric is said to be invariant if 𝑓 is an isometry, meaning that

𝑔𝑝(𝑢, 𝑣) = ( 𝑓 ∗𝑔′)𝑝(𝑢, 𝑣) := 𝑔′
𝑓 (𝑝)( 𝑓∗𝑢, 𝑓∗𝑣), for all 𝑝 ∈ ℰ and 𝑢, 𝑣 ∈ 𝑇𝑝ℰ ,

where 𝑓∗ : 𝑇𝑝ℰ → 𝑇𝑓 (𝑝)ℰ′ is the pushforward of 𝑓 . A congruent Markov mapping is in

simple terms a linear map 𝑝 ↦→ 𝑀𝑇𝑝, where 𝑀 is a row stochastic partition matrix, i.e.,

a matrix of non-negative entries with a single non-zero entry per column and entries of

each row adding to one. Such a mapping has the natural interpretation of splitting each

elementary event into several possible outcomes with fixed conditional probabilities. By

Chentsov’s theorem, requiring invariance with respect to these mappings results in a

single possible choice for the metric (up to multiplicative constants). We recall that on the

interior of the probability simplex Δ𝒮 the Fisher metric is given by

𝑔𝑝(𝑢, 𝑣) =
∑
𝑠∈𝒮

𝑢𝑠𝑣𝑠

𝑝𝑠
, for all 𝑢, 𝑣 ∈ 𝑇𝑝Δ𝒮 .
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Based on this approach, Campbell [67] characterized the set of invariant metrics on

the set of non-normalized positive measures with respect to congruent embeddings by

Markov mappings. This results in a family of metrics, which restrict to the Fisher metric

(up to a multiplicative constant) over the probability simplex. Following this line of ideas,

Lebanon [169] characterized a class of invariant metrics of positive matrices that restrict to

products of Fisher metrics over stochastic matrices.1 The maps considered by Lebanon do

not map stochastic matrices to stochastic matrices, which motivated [205] to investigate a

natural class of mappings between conditional probabilities. They showed that requiring

invariance with respect to their proposed mappings singles out a family of metrics that

correspond to products of Fisher metrics on the interior of the conditional probability

polytope,

𝑔𝜋(𝑢, 𝑣) =
∑
𝑠∈𝒮

1

|𝒮|
∑
𝑎∈𝒜

𝑢𝑠𝑎𝑣𝑠𝑎

𝜋𝑠𝑎
, for all 𝑢, 𝑣 ∈ 𝑇𝜋Δ𝒮𝒜 ,

up to multiplicative constants. This work also offered a discussion of metrics on general

polytopes and weighted products of Fisher metrics, which correspond to the Fisher metric

when the conditional probability polytope is embedded in the joint probability simplex

by way of providing a marginal distribution.

Hessian geometries. Instead of characterizing the geometry of model space ℳ via

an invariance axiomatic, one can select a metric based on the optimization problem at

hand. For example, it is well known that the Fisher metric is the local Riemannian metric

induced by the Hessian of the KL-divergence in the probability simplex. Hence, if the

objective function is a KL-divergence, choosing the Fisher metric yields preconditioners

that recover the inverse of the Hessian at the optimum, which can yield locally quadratic

convergence rates. More generally, if the objective ℓ : ℳ → R has a positive definite

Hessian at every point, it induces a Riemannian metric via

𝑔𝑝(𝑣, 𝑤) = 𝑣⊤∇2ℓ (𝑝)𝑤
in local coordinates, which we call the Hessian geometry induced by ℓ onℳ; see [15, 259].

Example 4.3 (Hessian geometries). The following Riemannian geometries are induced by

strictly convex functions.

(i) Euclidean geometry: The Euclidean geometry on R𝑑 is induced by the squared

Euclidean norm 𝑥 ↦→ 1

2

∑
𝑖 𝑥

2

𝑖
.

(ii) Fisher geometry: The Fisher metric on R𝑑>0
is induced by the negative entropy

𝑥 ↦→ ∑
𝑖 𝑥𝑖 log(𝑥𝑖).

(iii) Itakura-Saito: The logarithmic barrier function 𝑥 ↦→ −∑
𝑖 log(𝑥𝑖) of the positive

cone R𝑑>0
yields the Itakura-Saito metric (see the next item).

(iv) 𝜎-geometries: All of the above examples can be interpreted as special cases of a

parametric family of Hessian metrics. More precisely, if we let

(4.1) 𝜙𝜎(𝑥) B


∑
𝑖 𝑥𝑖 log(𝑥𝑖) if 𝜎 = 1

−∑
𝑖 log(𝑥𝑖) if 𝜎 = 2

1

(2−𝜎)(1−𝜎)
∑
𝑥2−𝜎
𝑖

otherwise,

1For Riemannian manifolds (ℳ
1
, 𝑔

1
) and (ℳ

2
, 𝑔

2
), the product metric on ℳ

1
× ℳ

2
is defined by

𝑔(𝑢
1
+ 𝑢

2
, 𝑣

1
+ 𝑣

2
) = 𝑔

1
(𝑢

1
, 𝑣

1
) + 𝑔

2
(𝑢

2
, 𝑣

2
).

99



then the resulting Riemannian metric on R𝑑 for 𝜎 ∈ (−∞, 0] and on R𝑑>0
for

𝜎 ∈ (0,∞) is given by

(4.2) 𝑔𝜎𝑥 (𝑣, 𝑤) =
∑
𝑖

𝑣𝑖𝑤𝑖

𝑥𝜎
𝑖

.

This recovers the Euclidean geometry for 𝜎 = 0, the Fisher metric for 𝜎 = 1, and

the Itakura-Saito metric for 𝜎 = 2. Note that these geometries are closely related

to the so-called 𝛽-divergences [15], which are the Bregman divergences of the

functions 𝜙𝜎 for 𝛽 = 1 − 𝜎. We use 𝜎 instead of 𝛽 in order to avoid confusion

with our notation for the observation kernel 𝛽 in a POMDP.

(v) Conditional entropy: Given two finite sets 𝒳 ,𝒴 and a probability distribution 𝜇
in Δ𝒳×𝒴 we can consider the conditional entropy

(4.3) 𝜙𝐶(𝜇) = 𝐻(𝜇|𝜇𝑋) B −
∑
𝑥,𝑦

𝜇(𝑥, 𝑦) log

𝜇(𝑥, 𝑦)
𝜇𝑋(𝑥)

= 𝐻(𝜇) − 𝐻(𝜇𝑋).

This is a convex function on the simplex Δ𝒳×𝒴 [218]. The Hessian of the condi-

tional entropy is given by

(4.4) 𝜕(𝑥,𝑦)𝜕(𝑥′,𝑦′)𝜙𝐶(𝜇) = 𝛿𝑥𝑥′
(
𝛿𝑦𝑦′𝜇(𝑥, 𝑦)−1 − 𝜇𝑋(𝑥)−1

)
,

as can be verified by explicit computation or the chain rule for Hessian matrices

(see also proof of Theorem 4.8). This Hessian does not induce a Riemannian

geometry on the entire simplex since it is not positive definite on the tangent

space𝑇Δ𝒳×𝒴 , as can be seen from the specific choice𝒳 = 𝒴 = {1, 2}, 𝜇𝑖 𝑗 = 1/4 for

all 𝑖 , 𝑗 = 1, 2 and the tangent vector 𝑣 ∈ 𝑇𝜇Δ𝒳×𝒴 given by 𝑣𝑖 𝑗 = (−1)𝑖 . However,

when fixing a marginal distribution 𝜈 ∈ Δ𝒳 , 𝜈 > 0, then the conditional entropy

𝜙𝐶 induces a Riemannian metric on the interior of 𝑃 = {𝜇 ∈ Δ𝒳×𝒴 : 𝜇𝑋 = 𝜈}.
To see this we consider the diffeomorphism given by conditioning int(𝑃) →
int(Δ𝒳𝒴), 𝜇 ↦→ 𝜇𝑌 |𝑋 . It can be shown by explicit computation (analogous to the

proof of Theorem 4.8) that the Hessian ∇2𝜙𝐶(𝜇) is the metric tensor of the pull

back of the Riemmanian metric

𝑔 : 𝑇Δ𝒳𝒴 × 𝑇Δ
𝒳
𝒴 → R, 𝑔𝜇(·|·)(𝑣, 𝑤) B

∑
𝑥

𝜈(𝑥)
∑
𝑦

𝑣(𝑥, 𝑦)𝑤(𝑥, 𝑦)
𝜇(𝑦 |𝑥) .

This argument can be adapted to sets {𝜇 ∈ Δ𝒳×𝒳 : 𝜇𝑋 = 𝜈(𝜇𝑌 |𝑋)}, where

𝜈 : int(Δ𝒳𝒴) → int(Δ𝒳) depends smoothly on the conditional 𝜇𝑌 |𝑋 ∈ Δ𝒳𝒴 .

We note that the Bregman divergence induced by the conditional entropy is

the conditional relative entropy [218],

𝐷𝜙𝐶 (𝜇(1) , 𝜇(2)) = 𝐷𝐾𝐿(𝜇(1) , 𝜇(2)) − 𝐷𝐾𝐿(𝜇(1)𝑋 , 𝜇
(2)
𝑋
)

=
∑
𝑥

𝜇(1)
𝑋
(𝑥)𝐷𝐾𝐿(𝜇(1)(·|𝑥), 𝜇(2)(·|𝑥)).

Local Hessian of Bregman divergences. Let𝜙 be a twice differentiable convex function

and denote its Bregman divergence with 𝐷𝜙(𝑥, 𝑦) = 𝜙(𝑥) − 𝜙(𝑦) − ⟨∇𝜙(𝑦), 𝑥 − 𝑦⟩. Then

it holds that

(4.5) ∇2

𝑦𝐷𝜙(𝑥, 𝑦)|𝑦=𝑥 = ∇2

𝑦𝐷𝜙(𝑦, 𝑥)|𝑦=𝑥 = ∇2𝜙(𝑥).
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To see this, we set 𝑓 (𝑦) B 𝐷𝜙(𝑥, 𝑦). It is immediate that ∇2 𝑓 (𝑦) = ∇2𝜙(𝑦). Further, one

can compute

𝜕𝑦𝑗 𝑓 (𝑦) = 𝜕𝑦𝑗

(
𝜙(𝑥) − 𝜙(𝑦) −

∑
𝑘

𝜕𝑦𝑘𝜙(𝑦)(𝑥𝑘 − 𝑦𝑘)
)

= −𝜕𝑦𝑗𝜙(𝑦) +
∑
𝑘

𝜕𝑦𝑗𝜕𝑦𝑘𝜙(𝑦)(𝑦𝑘 − 𝑥𝑘) + 𝜕𝑦𝑗𝜙(𝑦).

Hence, we obtain

𝜕𝑦𝑖𝜕𝑦𝑗 𝑓 (𝑦) = −𝜕𝑦𝑖𝜕𝑦𝑗𝜙(𝑦) +
∑
𝑘

𝜕𝑦𝑖𝜕𝑦𝑗𝜕𝑦𝑘𝜙(𝑦)(𝑦𝑘 − 𝑥𝑘) + 𝜕𝑦𝑖𝜕𝑦𝑗𝜙(𝑦) + 𝜕𝑦𝑖𝜕𝑦𝑗𝜙(𝑦),

and hence ∇2 𝑓 (𝑥) = ∇2𝜙(𝑥).

Connection to generalized Gauss-Newton methods. Let 𝜙 be a twice differentiable

strictly convex function. Then the Gram matrix of the Hessian geometry is given by

𝐺(𝜃) = 𝐷𝑃(𝜃)⊤∇2𝜙(𝑃(𝜃))𝐷𝑃(𝜃).

Hence 𝐺−1(𝜃) can be interpreted as a generalized Gauss-Newton matrix of the objective

function 𝜙 ◦ 𝑃 [192]. In particular, for the square loss we have 𝜙(𝑥) = ∥𝑥∥2
2
, in which case

𝐺(𝜃)−1 = (𝐷𝑃(𝜃)⊤𝐷𝑃(𝜃))−1
is the usual nonlinear least squares Gauss-Newton matrix.

Note that this is only the case when choosing the Hessian geometry of the objective

function. Later, in the case of Markov decision processes this is the case when applying

(the right) natural policy gradient to a regularized reward optimization problem. In

contrast, the unregularized case, the objective in state-action space is linear and does not

induce a Hessian geometry and hence the natural policy gradients do not agree with a

generalized Gauss-Newton method.

4.2 Natural policy gradient methods

In this section we give a brief overview of different notions of policy gradient methods

that have been proposed in the literature and study their associated geometries in state-

action space. Policy gradient methods [300, 159, 277, 190, 40] offer a flexible approach to

reward optimization. They have been used in robotics [232] and have been combined with

deep neural networks [265, 266, 255]. In the context of MDPs there are multiple notions

of natural policy gradients. For instance, one may choose to use an optimal transport

geometry in model space resulting in Wasserstein natural policy gradients [208]. Most

important to our discussion, there are different possible choices for the model space. One

obvious candidate is the policy space Δ𝒮𝒜 , which was used by Kakade [153]. However the

objective function 𝑅(𝜋) is a rational non-convex function over this space an thus requires

a delicate analysis. A second candidate, which was proposed by Morimura et al. [206],

is the state-action space 𝒩 ⊆ Δ𝒮×𝒜 , for which the objective becomes a rather simple,

linear function. We recall the following result, which allow us to study any NPG method

defined with respect to the policy space in state-action space.

Assumption 3.3 (Positivity). For every 𝑠 ∈ 𝒮 and 𝜋 ∈ Δ𝒪𝒜 , we assume that

∑
𝑎 𝜂

𝜋
𝑠𝑎 > 0.
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Proposition 3.4 (Inverse of state-action map). Under Assumption 3.3, the mapping

Ψ : Δ𝒮𝒜 →𝒩 , 𝜋 ↦→ 𝜂𝜋

is rational and bĳective with rational inverse given by conditioning

Ψ−1

: 𝒩 → Δ𝒮𝒜 , 𝜂 ↦→ 𝜋, where 𝜋(𝑎 |𝑠) = 𝜂(𝑠, 𝑎)∑
𝑎′ 𝜂(𝑠, 𝑎′)

.

Because of the simplicity of the objective function in state-action space, we propose to

study the evolution of NPG methods in this space. As we will see, this has the added

benefit that it allows us to interpret several of the existing NPG methods as being induced

by Hessian geometries. Based on this observation we can conduct a relatively simple

convergence analysis for these methods. Finally, we propose a class of policy gradients

closely related to 𝛽-divergences that interpolate between NPG arising from logarithmic

barriers, entropic regularization and the Euclidean geometry.

4.2.1. Policy gradients. Throughout the section, we consider parametric policy models

𝑃 : Θ → Δ𝒮𝒜 and write 𝜋𝜃 = 𝑃(𝜃) ∈ Δ𝒮𝒜 for the policy arising from the parameter 𝜃.

We denote the corresponding state-action and state frequencies by 𝜂𝜃 and 𝜌𝜃. Finally,

in slight abuse of notation we write 𝑅(𝜃) for the expected infinite-horizon discounted

reward obtained by the policy 𝜋𝜃. The vanilla policy gradient (vanilla PG) method is given

by the iteration

(4.6) 𝜃𝑘+1 B 𝜃𝑘 + Δ𝑡 · ∇𝑅(𝜃𝑘),

where Δ𝑡 > 0 is the step size.

In principle, the reward function can be differentiated using automatic or numerical

differentiation methods. A different approach is to use the celebrated policy gradient

theorem and use matrix inversion to compute the state-action value function 𝑄𝜃. We

restate the policy gradient theorem here for convience.

Theorem 3.11 (Policy gradient theorem, [277, 190, 2]). It holds that

(1 − 𝛾)𝜕𝜃𝑖𝑅(𝜃) =
∑
𝑠

𝜌𝜃(𝑠)
∑
𝑎

𝜕𝜃𝑖𝜋𝜃(𝑎 |𝑠)𝑄𝜃(𝑠, 𝑎) =
∑
𝑠,𝑎

𝜂𝜃(𝑠, 𝑎)𝜕𝜃𝑖 log(𝜋𝜃(𝑎 |𝑠))𝑄𝜃(𝑠, 𝑎).

In a reinforcement learning setup, one does not have direct access to 𝛼 and hence

to state and state-action transition kernels 𝑝𝜋 and 𝑃𝜋 nor 𝑄𝜋
, and sometimes even the

state space 𝒮 is not known a priori. In this case, one has to estimate the gradient from

interactions with the environment [40, 39, 207, 276]. In this work, however, we study the

planning problem in MDPs, i.e., we assume access to exact gradient evaluations.

Policy parametrizations. Many results on the convergence of policy gradient methods

have been provided for tabular softmax policies. The tabular softmax parametrization is

given by

(4.7) 𝜋𝜃(𝑎 |𝑠) B
𝑒𝜃𝑠𝑎∑
𝑎′ 𝑒

𝜃𝑠𝑎′
for all 𝑎 ∈ 𝒜 , 𝑠 ∈ 𝒮 ,

for 𝜃 ∈ R𝒮×𝒜 . One benefit of tabular softmax policies is that they parametrize the interior

of the policy polytope Δ𝒮𝒜 in a regular way, i.e., such that the Jacobian has full rank

everywhere, and the parameter is unconstrained in an affine space.
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Definition 4.4 (Regular parametrization). We call R𝑝 → int(Δ𝒮𝒜), 𝜃 ↦→ 𝜋𝜃 a regular policy
parametrization if it is differentiable, surjective and satisfies

(4.8) span{𝜕𝜃𝑖𝜋𝜃 : 𝑖 = 1, . . . , 𝑝} = 𝑇𝜋𝜃Δ
𝒮
𝒜 for every 𝜃 ∈ R𝑝 .

We will focus on regular policy parametrizations, which cover softmax policies as well

as escort transformed policies [198]. Nonetheless, we observe that policy optimization

with constrained search variables can also be an attractive option and refer to [210] for a

discussion in context of POMDPs.

Remark 4.5 (Partially observable systems). Although we will only consider parametric

policies in fully observable MDPs, our discussion covers the case of POMDPs in the

following way. Any parametric family of observation-based policies {𝜋𝜃 : 𝜃 ∈ Θ} ⊆ Δ𝒪𝒜
induces a parametric family of state-based policies {𝜋𝜃 ◦ 𝛽 : 𝜃 ∈ Θ} ⊆ Δ𝒮𝒜 . Hence, the

policy gradient theorem as well as the definitions of natural policy gradients directly

extend to the case of partially observable systems. However, the global convergence

guarantees in Section 4.3 and Section 4.4 do not carry over to POMDPs since they assume

regular parametrization of the policies.

Regularization in MDPs. In practice, the reward function is often regularized as

𝑅𝜆 = 𝑅 − 𝜆𝜓.

This is often motivated to encourage exploration [300] and has also been shown to lead

to fast convergence for strictly convex regularizers 𝜓 [200, 71]. One popular regularizer is

the conditional entropy in state-action space, see [218, 200, 71],

(4.9) 𝜓𝐶(𝜃) =
∑
𝑠

𝜌𝜃(𝑠)
∑
𝑎

𝜋𝜃(𝑎 |𝑠) log(𝜋𝜃(𝑎 |𝑠)) = 𝐻(𝜂𝜃) − 𝐻(𝜌𝜃),

which has also been used to successfully design trust region and proximal methods for

reward optimization [251, 250]. It is also possible to take the functions 𝜙𝜎 defined in (4.1)

as regularizers. This includes the entropy function, which is studied in state-action space

in [218] and logarithmic barriers, which are studied in policy space in [2].

Projected policy gradients. An alternative to using parametrizations with the prop-

erty that any unconstrained choice of the parameter leads to a policy, is to use constrained

parametrizations and projected gradient methods. For instance, one can parametrize

policies in Δ𝒮𝒜 by their constrained entries and use the iteration

𝜋𝑘+1 B Π
Δ𝒮𝒜
(𝜋𝑘 + Δ𝑡𝐺(𝜋𝑘)+∇𝑅(𝜋)),

whereΠ
Δ𝒮𝒜

is the (Euclidean) projection toΔ𝒮𝒜 . We will not study projected policy gradient

methods and refer to [2, 305] for convergence rates of these methods.

4.2.2. Kakade’s natural policy gradient. Kakade [153] proposed a natural policy

gradient based on a Riemannian geometry in the policy polytope Δ𝒮𝒜 . We will see

that Kakade’s NPG can be interpreted as the NPG induced by the Hessian geometry in

state-action space arising from conditional entropy regularization of the linear program

associated to MDPs. Kakade’s idea was to mix the Fisher information matrices of the
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policy over the individual states according to the state frequencies, i.e., to use the following

Gram matrix:

𝐺𝐾(𝜃)𝑖 𝑗 =
∑
𝑠

𝜌𝜃(𝑠)
∑
𝑎

𝜋𝜃(𝑎 |𝑠)𝜕𝜃𝑖 log(𝜋𝜃(𝑎 |𝑠))𝜕𝜃𝑗 log(𝜋𝜃(𝑎 |𝑠))

=
∑
𝑠,𝑎

𝜂𝜃(𝑠, 𝑎)𝜕𝜃𝑖 log(𝜋𝜃(𝑎 |𝑠))𝜕𝜃𝑗 log(𝜋𝜃(𝑎 |𝑠))

=
∑
𝑠

𝜌𝜃(𝑠)
∑
𝑎

𝜕𝜃𝑖𝜋𝜃(𝑎 |𝑠)𝜕𝜃𝑗𝜋𝜃(𝑎 |𝑠)
𝜋𝜃(𝑎 |𝑠)

.

(4.10)

Definition 4.6 (Kakade’s NPG and geometry in policy space). We refer to the natural

gradient ∇𝐾𝑅(𝜃) B 𝐺𝐾(𝜃)+∇𝜃𝑅(𝜋𝜃) as Kakade’s natural policy gradient (K-NPG), where

𝐺𝐾 is defined in (4.10). Hence, Kakade’s NPG is the NPG induced by the factorization

𝜃 ↦→ 𝜋𝜃 ↦→ 𝑅(𝜃) and the Riemannian metric on int(Δ𝒮𝒜) given by

𝑔𝐾𝜋 (𝑣, 𝑤) B
∑
𝑠

𝜌𝜋(𝑠)
∑
𝑎

𝑣(𝑠, 𝑎)𝑤(𝑠, 𝑎)
𝜋(𝑎 |𝑠) for all 𝑣, 𝑤 ∈ 𝑇𝜋Δ𝒮𝒜 .(4.11)

Due to its popularity, this method is often referred to simply as the natural policy

gradient. We will call it Kakade’s NPG in order to distinguish it from other NPGs.

Remark 4.7. In [153] the definition of 𝐺𝐾 was heuristically motivated by the fact that

the reward is also a mix of the one step rewards according to the state frequencies,

𝑅(𝜋) = ∑
𝑠 𝜌

𝜋(𝑠)∑𝑎 𝜋(𝑎 |𝑠)𝑟(𝑠, 𝑎) =
∑
𝑠 𝜌

𝜋(𝑠)𝑟𝜋(𝑠). The invariance axiomatic approaches

discussed in [169, 205] also yield mixtures of Fisher metrics over individual states, which

however do not fully recover Kakade’s metric, since this would require a way to account

for the particular process that gives rise to the stationary state distribution 𝜌𝜋. The works

[232, 28, 216] argued that the Gram matrix 𝐺𝐾 corresponds to the limit of the Fisher

information matrices of finite-path measures as the path length tends to infinity.

Interpration as Hessian geometry of conditional entropy. The metric 𝑔𝐾 on the con-

ditional probability polytope Δ𝒮𝒜 has been studied in terms of its invariances and its

connection to the Fisher metric on finite-horizon path space [28, 232, 205]. We offer a

different interpretation of Kakade’s geometry by studying its counterpart in state-action

space, which we show to be the Hessian geometry induced by the conditional entropy.

Theorem 4.8 (Kakade’s geometry as conditional entropy Hessian geometry). Consider an
MDP (𝒮 ,𝒜 , 𝛼, 𝑟) and fix 𝜇 ∈ Δ𝒮 and 𝛾 ∈ [0, 1) such that Assumption 3.3 holds. Then, Kakade’s
geometry on Δ𝒮𝒜 is the pull back of the Hessian geometry induced by the conditional entropy on
the state-action polytope𝒩 ⊆ Δ𝒮×𝒜 along 𝜋 ↦→ 𝜂𝜋.

Proof. We can pull back the Riemannian metric on the policy polytope proposed by

Kakade along the conditioning map to define a corresponding geometry in state-action
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space. The metric tensor in state-action space is given by

𝐺(𝜂)(𝑠,𝑎),(𝑠′,𝑎′) = 𝑔𝐾𝜋 (𝜕(𝑠,𝑎)𝜂(·|·), 𝜕(𝑠′,𝑎′)𝜂(·|·))

=
∑̃
𝑠,�̃�

𝜌(𝑠)
𝜕(𝑠,𝑎)𝜂(�̃� |𝑠)𝜕(𝑠′,𝑎′)𝜂(�̃� |𝑠)

𝜂(�̃� |𝑠)

=
∑̃
𝑠,�̃�

𝜌(𝑠)2
𝜕(𝑠,𝑎)𝜂(�̃� |𝑠)𝜕(𝑠′,𝑎′)𝜂(�̃� |𝑠)

𝜂(𝑠, �̃�) .

(4.12)

Using 𝜕(𝑠,𝑎)𝜂(�̃� |𝑠) = 𝜕(𝑠,𝑎)(𝜂(𝑠, �̃�)𝜌(𝑠)−1) = 𝛿𝑠𝑠(𝛿𝑎�̃�𝜌(𝑠)−1 − 𝜂(𝑠, �̃�)𝜌(𝑠)−2)we obtain

𝐺(𝜂)(𝑠,𝑎),(𝑠′,𝑎′) = 𝛿𝑠𝑠′
(
𝛿𝑎𝑎′𝜂(𝑠, 𝑎)−1 − 𝜌(𝑠)−1

)
.(4.13)

We aim to show that 𝐺(𝜂) = ∇2𝜙𝐶(𝜂), where 𝜙𝐶(𝜂) = 𝐻(𝜂) − 𝐻(𝜌) denotes the relative

entropy and 𝜌(𝑠) = ∑
𝑎 𝜂(𝑠, 𝑎) denotes the state-marginal. Note that ∇2𝐻(𝜂) = diag(𝜂),

which is the first term appearing in (4.13). For linear maps 𝑔𝐴(𝑥) = 𝐴𝑥 the chain rule

yields the expression

𝜕𝑖𝜕𝑗( 𝑓 ◦ 𝑔𝐴)(𝑥) =
∑
𝑘,𝑙

𝐴𝑘𝑖𝜕𝑘𝜕𝑙 𝑓 (𝑔𝐴(𝑥))𝐴𝑙 𝑗 .

Noting that 𝜌 is a linear function of 𝜂 we obtain

𝜕(𝑠,𝑎)𝜕(𝑠′,𝑎′)𝐻(𝜌) =
∑̃
𝑠,𝑠

𝛿𝑠,𝑠𝜕𝑠𝜕𝑠𝐻(𝜌)𝛿𝑠,𝑠′ = 𝛿𝑠𝑠′𝜌(𝑠)−1 ,

which is the second term in (4.13). Overall this implies 𝐺(𝜂) = ∇2𝜙𝐶(𝜂). □

The above theorem shows that Kakade’s natural policy gradient is the natural policy

gradient induced by the factorization 𝜃 ↦→ 𝜂𝜃 ↦→ 𝑅(𝜃) with respect to the conditional

entropy Hessian geometry, i.e.,

𝐺𝐾(𝜃)𝑖 𝑗 =
∑
𝑠,𝑎

𝜕𝜃𝑖𝜂𝜃(𝑠, 𝑎)𝜕𝜃𝑗𝜂𝜃(𝑠, 𝑎)
𝜂𝜃(𝑠, 𝑎)

−
∑
𝑠

𝜕𝜃𝑖𝜌𝜃(𝑠)𝜕𝜃𝑗𝜌𝜃(𝑠)
𝜌𝜃(𝑠)

=
∑
𝑠,𝑎

𝜕𝜃𝑖 log(𝜂𝜃(𝑠, 𝑎))𝜕𝜃𝑗 log(𝜂𝜃(𝑠, 𝑎))𝜂𝜃(𝑠, 𝑎)

−
∑
𝑠

𝜕𝜃𝑖 log(𝜌𝜃(𝑠))𝜕𝜃𝑗 log(𝜌𝜃(𝑠))𝜌𝜃(𝑠).

(4.14)

It is also worth noting that the Bregman divergence of the conditional entropy is the

conditional relative entropy and has been studied as a regularizer for the linear program

associated to MDPs in [218].

Remark 4.9. Kakade’s NPG is known to converge at a locally quadratic rate under condi-

tional entropy regularization [71], a regularizer, which in policy space takes the form

𝜓(𝜋) =
∑
𝑠

𝜌𝜋(𝑠)
∑
𝑎

𝜋(𝑎 |𝑠) log(𝜋(𝑎 |𝑠)) =
∑
𝑠

𝜌𝜋(𝑠)𝐻(𝜋(·|𝑠)).

Note however, by direct calculation, that Kakade’s geometry in policy space 𝑔𝐾 defined

in (4.11) is not the Hessian geometry induced by 𝜓 in policy space, which would take the
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form

∇2𝜓(𝜋) =
∑
𝑠

𝜌𝜋(𝑠)∇2𝐻(𝜋(·|𝑠)) +
∑
𝑠

(∇𝐻(·|𝑠)⊤∇𝜌𝜋(𝑠) + ∇𝐻(·|𝑠)∇𝜌𝜋(𝑠)⊤)

+
∑
𝑠

𝐻(𝜋(·|𝑠))∇2𝜌𝜋(𝑠).

Instead, the metric proposed by Kakade only considers the contribution of the first term;

see (4.11). As we will see in Sections 4.3 and 4.4, the interpretation of Kakade’s NPG as

a Hessian natural gradient induced by the conditional entropic regularization in state-

action space allows for a great simplification of its convergence analysis. One can show

that Kakade’s metric is not a Hessian metric in policy space. By Schwarz’s theorem the

metric tensor of a Hessian Riemannian metric satisfies 𝜕𝑖 𝑔𝑗𝑘 = 𝜕𝑗 𝑔𝑖𝑘 . However, we have

𝜕(𝑠,�̃�)𝐺(𝜋)(𝑠,𝑎),(𝑠′,𝑎′) = 𝛿𝑠𝑠′𝛿𝑎𝑎′
(
−𝛿𝑠𝑠𝛿𝑎�̃�𝜌𝜋(𝑠)𝜋(𝑎 |𝑠)−2 + 𝜋(𝑎 |𝑠)𝜕(𝑠,�̃�)𝜌𝜋(𝑠)

)
,

which does not satisfy this symmetry property in general. This shows that the Riemannian

metric on the policy polytope Δ𝒮𝒜 proposed by Kakade does not arise from a Hessian.

4.2.3. Morimura’s natural policy gradient. In contrast to Kakade’s approach, who

proposed a mixture of Fisher metrics to obtain a metric on the conditional probability

polytope Δ𝒮𝒜 , Morimura and co-authors [206] proposed to work with the Fisher metric

in state-action space Δ𝒮×𝒜 to define a natural gradient for reward optimization. The

resulting Gram matrix is given by the Fisher information matrix induced by the state-

action distributions, that is 𝑃(𝜃) = 𝜂𝜃 and

(4.15) 𝐺𝑀(𝜃)𝑖 𝑗 =
∑
𝑠,𝑎

𝜕𝜃𝑖 log(𝜂𝜃(𝑠, 𝑎))𝜕𝜃𝑗 log(𝜂𝜃(𝑠, 𝑎))𝜂𝜃(𝑠, 𝑎).

Definition 4.10 (Morimura’s NPG). We refer to the ∇𝑀𝑅(𝜃) B 𝐺𝑀(𝜃)+∇𝜃𝑅(𝜋𝜃) as

Morimura’s natural policy gradient (M-NPG), where 𝐺𝑀 is defined in (4.15). Hence,

Morimura’s NPG is the NPG induced by the factorization 𝜃 ↦→ 𝜂𝜃 ↦→ 𝑅(𝜃) and the

Fisher metric on int(Δ𝒮×𝒜).
By (4.14) the Gram matrix proposed by Morimura and co-authors and the Gram matrix

proposed by Kakade are related to each other by

𝐺𝐾(𝜃) = 𝐺𝑀(𝜃) − 𝐹𝜌(𝜃),

where 𝐹𝜌(𝜃)𝑖 𝑗 =
∑
𝑠 𝜌𝜃(𝑠)𝜕𝜃𝑖 log(𝜌𝜃(𝑠))𝜕𝜃𝑗 log(𝜌𝜃(𝑠))denotes the Fisher information matrix

of the state distributions. This relation is reminiscent of the chain rule for the conditional

entropy and can be verified by direct computation; see [206]. Where we have seen that

Kakade’s geometry in state-action space is the Hessian geometry of conditional entropy,

the Fisher metric is known to be the Hessian metric of the entropy function [15]. Hence,

we can interpret the Fisher metric as the Hessian geometry of the entropy regularized

reward 𝜂 ↦→ ⟨𝑟, 𝜂⟩ − 𝐻(𝜂).

4.2.4. General Hessian natural policy gradient. Generalizing the above definitions,

we define general state-action space Hessian NPGs as follows. Consider a twice differen-

tiable function 𝜙 : R𝒮×𝒜>0
→ R such that ∇2𝜙(𝜂) is positive definite on 𝑇𝜂𝒩 = 𝑇ℒ ⊆ R𝒮×𝒜
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for every 𝜂 ∈ int(𝒩). Then we set

𝐺𝜙(𝜃)𝑖 𝑗 B
∑

𝑠,𝑠′,𝑎,𝑎′
𝜕𝜃𝑖𝜂𝜃(𝑠, 𝑎)𝜕(𝑠,𝑎)𝜕(𝑠′,𝑎′)𝜙(𝜂𝜃)𝜕𝜃𝑗𝜂𝜃(𝑠′, 𝑎′),

which is the Gram matrix with respect to the Hessian geometry in R𝒮×𝒜>0
.

Definition 4.11 (Hessian NPG). We refer to ∇𝜙𝑅(𝜃) B 𝐺𝜙(𝜃)+∇𝜃𝑅(𝜋𝜃) as Hessian natural
policy gradient with respect to 𝜙 or shortly 𝜙-natural policy gradient (𝜙-NPG).

Leveraging results on gradient flows in Hessian geometries we will later provide

global convergence guarantees including convergence rates for a large class of Hessian

NPG flows covering Kakade’s and Morimura’s natural gradients as special cases. Further,

we consider the family 𝜙𝜎 of strictly convex functions defined in (4.1). With 𝐺𝜎(𝜃) we

denote the Gram matrix associated with the Riemannian metric 𝑔𝜎, i.e.,

𝐺𝜎(𝜃)𝑖 𝑗 =
∑
𝑠,𝑎

𝜕𝜃𝑖𝜂𝜃(𝑠, 𝑎)𝜕𝜃𝑗𝜂𝜃(𝑠, 𝑎)
𝜂𝜃(𝑠, 𝑎)𝜎

.

Definition 4.12 (𝜎-NPG). We refer to the natural gradient ∇𝜎𝑅(𝜃) B 𝐺𝜎(𝜃)+∇𝜃𝑅(𝜋𝜃)
as the 𝜎-natural policy gradient (𝜎-NPG). Hence, the 𝜎-NPG is the NPG induced by the

factorization 𝜃 ↦→ 𝜂𝜃 ↦→ 𝑅(𝜃) and the metric 𝑔𝜎 on int(Δ𝒮×𝒜) defined in (4.2).

For 𝜎 = 1 we recover the Fisher geometry and hence Morimura’s NPG; for 𝜎 = 2

we obtain the Itakura-Saito metric; and for 𝜎 = 0 we recover the Euclidean geometry.

Later, we show that the Hessian gradient flows exist globally for 𝜎 ∈ [1,∞) and provide

convergence rates depending on 𝜎.

4.3 Convergence of natural policy gradient flows

In this section we study the convergence properties of natural policy gradient flows

arising from Hessian geometries in state-action space for fully observable systems and

regular parametrizations of the interior of the policy polytope Δ𝒮𝒜 . Leveraging methods

from the theory of gradient flows in Hessian geometries established in [11] we show

𝑂(𝑡−1) convergence of the objective value for a large class of Hessian geometries and

unregularized reward. We strengthen this general result and establish linear convergence

for Kakade’s and Morimura’s NPG flows and 𝑂(𝑡−1/(𝜎−1)) convergence for 𝜎-NPG flows

for 𝜎 ∈ (1, 2). We provide empirical evidence that these rates are tight and that the rate

𝑂(𝑡−1/(𝜎−1)) also holds for 𝜎 ≥ 2. Under strongly convex penalization, we obtain linear

convergence for a large class of Hessian geometries.

Reduction to state-action space dynamics. For a solution 𝜃(𝑡) of the natural policy

gradient flow, the corresponding state-action frequencies 𝜂(𝑡) solve the gradient flow

with respect to the Riemannian metric. This is made precise in the following result,

which shows that it suffices to study Riemannian gradient flows in state-action space.

Proposition 4.13 (Evolution in state-action space). Consider an MDP (𝒮 ,𝒜 , 𝛼, 𝑟), a Rie-
mannian metric 𝑔 on int(𝒩) = R𝒮×𝒜>0

and a differentiable objective function ℜ : int(Δ𝒮×𝒜) → R.
Consider a regular policy parametrization and the parameter objective 𝑅(𝜃) B ℜ(𝜂𝜃) and a
solution 𝜃 : [0, 𝑇] → Θ = R𝒮×𝒜 of the natural policy gradient flow

(4.16) 𝜕𝑡𝜃(𝑡) = ∇𝑁𝑅(𝜃(𝑡)) = 𝐺(𝜃(𝑡))+∇𝑅(𝜃(𝑡)),
107



where 𝐺(𝜃)𝑖 𝑗 = 𝑔𝜂(𝜕𝜃𝑖𝜂𝜃 , 𝜕𝜃𝑗𝜂𝜃) and 𝐺(𝜃)+ denotes some pseudoinverse of 𝐺(𝜃). Then, setting
𝜂(𝑡) B 𝜂𝜃(𝑡) we have that 𝜂 : [0, 𝑇] → Δ𝒮×𝒜 is the gradient flow with respect to the metric 𝑔 and
the objective ℜ, i.e., solves

(4.17) 𝜕𝑡𝜂(𝑡) = ∇𝑔ℜ(𝜂(𝑡)).

Proof. This is a direct consequence of Theorem 4.2. □

The preceding result covers the commonly studied tabular softmax parametrization.

For general parametrizations, the result does not hold. However, if for any two parameters

𝜃, 𝜃′ with 𝜂𝜃 = 𝜂𝜃′ it holds that

span{𝜕𝜃𝑖𝜋𝜃 : 𝑖 = 1, . . . , 𝑝} = span{𝜕𝜃𝑖𝜋𝜃′ : 𝑖 = 1, . . . , 𝑝},

then a similar result can be established. An important special case of such parametriza-

tions occurs in partially observable problems with memoryless policies parametrized in

a regular way, e.g., through the softmax or escort transform; see also Remark 4.5.

By Proposition 4.13 it suffices to study solutions 𝜂 : [0, 𝑇] → 𝒩 of the gradient flow in

state-action space. We have seen before that a large class of natural policy gradients arise

from Hessian geometries in state-action space. In particular, this covers the natural policy

gradients proposed by Kakade [153] and Morimura et al. [206]. We study the evolution of

these flows in state-action space and leverage results on Hessian gradient flows of convex

problems in [11, 290] to obtain global convergence rates for different NPG methods.

4.3.1. Convergence and existence for general rewards. First, we study the conver-

gence and well posedness for general reward functions under the following assumptions.

Setting 4.14. Let (𝒮 ,𝒜 , 𝛼, 𝑟) be an MDP, 𝛾 ∈ [0, 1),𝜇 ∈ Δ𝒮 and let the positivity Assumption 3.3
hold. We denote the state-action polytope by𝒩 = R𝒮×𝒜≥0

∩ ℒ (see Theorem 3.5) and the (relative)
interior and boundary of 𝒩 by int(𝒩) = R𝒮×𝒜>0

∩ ℒ and 𝜕𝒩 = 𝜕R𝒮×𝒜≥0
∩ ℒ respectively. We

consider an objective function ℜ : R𝒮×𝒜 → R ∪ {−∞,+∞} that is finite and differentiable on
R𝒮×𝒜>0

and we assume that ℜ continuous on its domain dom(ℜ) = {𝜂 ∈ R𝒮×𝒜 : ℜ(𝜂) ∈ R}.
We consider a real-valued function 𝜙 : R𝒮×𝒜 → R ∪ {+∞}, which we assume to be finite
and twice continuously differentiable on R𝒮×𝒜>0

and such that ∇2𝜙(𝜂) is positive definite on
𝑇𝜂𝒩 = 𝑇ℒ ⊆ R𝒮×𝒜 for every point 𝜂 ∈ int(𝒩) and denote the induced Hessian metric on int(𝒩)
by 𝑔. Further, with 𝜂 : [0, 𝑇) → 𝒩 we denote a solution of the Hessian gradient flow

(4.18) 𝜕𝑡𝜂(𝑡) = ∇𝑔ℜ(𝜂(𝑡))

with initial condition 𝜂(0) = 𝜂0. We set 𝑅∗ B sup𝜂∈𝒩 ℜ(𝜂) ∈ R ∪ {+∞} and by 𝜂∗ ∈ 𝒩 , we
denote a maximizer, if one exists, of ℜ over 𝒩 . We denote the policies corresponding to 𝜂(𝑡), 𝜂0

and 𝜂∗ by 𝜋(𝑡), 𝜋0 and 𝜋∗, see Proposition 3.4.
We observe that the Hessian of the conditional entropy only defines a Riemannian

metric on int(𝒩) and not over all of Δ𝒮×𝒜 . Note that 𝜂∗ might lie on the boundary and for

linear ℜ corresponding to unregularized reward it necessarily lies on the boundary.

We repeatedly make use of the following identity

(4.19) ⟨∇2𝜙(𝜂)∇𝑔ℜ(𝜂), 𝑣⟩ = 𝑔𝜂(∇𝑔ℜ(𝜂), 𝑣) = 𝑑ℜ(𝜂)𝑣 = ⟨∇ℜ(𝜂), 𝑣⟩,

which holds for any 𝑣 ∈ 𝑇ℒ.
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Sublinear rates for general rewards. We begin by providing a sublinear rate of con-

vergence for general NPG flows, which we then specialize to Kakade and 𝜎-NPGs.

Lemma 4.15 (Convergence of Hessian natural policy gradient flows). Consider Setting 4.14
and assume that ℜ is concave on R𝒮×𝒜>0

and that there exists a solution 𝜂 : [0, 𝑇) → int(𝒩) of the
NPG flow (4.18) with initial condition 𝜂(0) = 𝜂0. Then for any 𝜂′ ∈ 𝒩 and 𝑡 ∈ [0, 𝑇) it holds
that

(4.20) ℜ(𝜂′) −ℜ(𝜂(𝑡)) ≤ (𝐷𝜙(𝜂′, 𝜂0) − 𝐷𝜙(𝜂′, 𝜂(𝑡)))𝑡−1 ≤ 𝐷𝜙(𝜂′, 𝜂0)𝑡−1 ,

where 𝐷𝜙 denotes the Bregman divergence of 𝜙, in particular, ℜ(𝜂(𝑡)) → 𝑅∗ as 𝑇 → ∞. If there
is a maximizer 𝜂∗ ∈ 𝒩 of ℜ with 𝜙(𝜂∗) < ∞ the convergence happens at a rate 𝑂(𝑡−1).
Proof. This is precisely the statement of Proposition 4.4 in [11]; note however, that they

assume a globally defined objectiveℜ : R𝒮×𝒜 → R and hence for completeness we provide

a quick argument. If 𝜙(𝜂′) = +∞ the statement is trivial and hence we assume 𝜙(𝜂′) < +∞.

It holds that

𝜕𝑡𝐷𝜙(𝜂, 𝜂(𝑡)) = −𝜕𝑡𝜙(𝜂(𝑡)) − 𝜕𝑡 ⟨∇𝜙(𝜂(𝑡)), 𝜂 − 𝜂(𝑡)⟩
= −⟨∇𝜙(𝜂(𝑡)), 𝜕𝑡𝜂(𝑡)⟩ − ⟨∇2𝜙(𝜂(𝑡))𝜕𝑡𝜂(𝑡), 𝜂 − 𝜂(𝑡)⟩ + ⟨∇𝜙(𝜂(𝑡)), 𝜕𝑡𝜂(𝑡)⟩
= −⟨∇ℜ(𝜂(𝑡)), 𝜂 − 𝜂(𝑡)⟩,

where we used 𝜕𝑡𝜂(𝑡) = ∇𝑔ℜ(𝜂(𝑡)) as well as (4.19). Using the concavity of ℜ we can

estimate

(4.21) 𝜕𝑡𝐷𝜙(𝜂, 𝜂(𝑡)) = −⟨∇ℜ(𝜂(𝑡)), 𝜂 − 𝜂(𝑡)⟩ ≤ ℜ(𝜂(𝑡)) −ℜ(𝜂).

Integration and the monotonicity of 𝑡 ↦→ ℜ(𝜂(𝑡)) yields the claim. □

Well posedness of NPG flows. The previous result holds for general state-space ob-

jective and hence covers both regularized and unregularized rewards and reduces the

problem of showing convergence of the natural gradient flow to the problem of well-

posedness. However, well-posedness is not always given, such as for example in the case

of an unregularized reward and the Euclidean geometry in state-action space. In this

case, the gradient flow in state-action space will reach the boundary of the state-action

polytope 𝒩 in finite time at which point the gradient is not classically defined anymore

and the softmax parameters blow up; see Figure 4.3. An important class of Hessian

geometries that prevent a finite hitting time of the boundary are induced by the class of

Legendre-type functions, which curve up towards the boundary.

Definition 4.16 (Legendre type functions). We call 𝜙 : R𝒮×𝒜 → R ∪ {+∞} a Legendre type
function if it satisfies the following properties:

(i) Domain: It holds that R𝒮×𝒜>0
⊆ dom(𝜙) ⊆ R𝒮×𝒜≥0

, where the domain is given by

dom(𝜙) = {𝜂 ∈ R𝒮×𝒜 : 𝜙(𝜂) < ∞}.
(ii) Smoothness and convexity: We assume 𝜙 to be continuous on dom(𝜙) and twice

continuously differentiable onR𝒮×𝒜>0
and such that ∇2𝜙(𝜂) is positive definite on

𝑇𝜂𝒩 = 𝑇ℒ ⊆ R𝒮×𝒜 for every 𝜂 ∈ int(𝒩).
(iii) Gradient blowup at boundary: For any (𝜂𝑘)𝑘∈N ⊆ int(𝒩) with 𝜂𝑘 → 𝜂 ∈ 𝜕𝒩 we

have ∥∇𝜙(𝜂𝑘)∥ → ∞.
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We note that the above definition differs from [11], who consider Legendre functions

on arbitrary open sets but work with more restrictive assumptions. More precisely, they

require the gradient blowup on the boundary of the entire cone R𝒮×𝒜≥0
and not only on

the boundary of the feasible set𝒩 of the optimization problem. However, this relaxation

is required to cover the case of the conditional entropy, which corresponds to Kakade’s

NPG, as we see now.

Example 4.17. The class of Legendre type functions covers the functions inducing Kakade’s

and Morimura’s NPG via their Hessian geometries. More precisely, the following Le-

gendre type functions will be of great interest in the remainder:

(i) The functions 𝜙𝜎 defined in (4.1) used to define the 𝜎-NPG are Legendre type

functions for 𝜎 ∈ [1,∞). Note that this includes the Fisher geometry, corre-

sponding to Morimura’s NPG for 𝜎 = 1 but excludes the Euclidean geometry,

which corresponds to 𝜎 = 0.

(ii) The conditional entropy 𝜙𝐶 defined in (4.9) is a Legendre type function. The

Hessian geometry of this function induces Kakade’s NPG. Note that in this case

the gradient blowup holds on the boundary𝒩 but not on the boundary of Δ𝒮×𝒜
or even R𝒮×𝒜≥0

.

The definition of a Legendre function with the gradient blowing up at the boundary

of the feasible set prevents the gradient flow from reaching the boundary in finite time

and thus ensures the global existence of the gradient flow. Here, we provide a global

existence result similar to [11, Theorem 4.1], where they require the objective function ℜ

to admit a smooth extension onto the ambient space and 𝜙 to be globally strictly convex.

Note that the regularized reward ℜ(𝜂) = ⟨𝑟, 𝜂⟩ − 𝜆𝜙(𝜂) never admits a smooth extension

if 𝜙 is a Legendre type function like the entropy or conditional entropy. Therefore, we

require a different assumption (4.22) that bounds the curvature of the objective in terms

of the curvature of the function 𝜙 as we discuss in Example 4.19.

Theorem 4.18 (Well posedness of Hessian NPG flows). Consider Setting 4.14, let 𝜙 be a
Legendre type function and assume that there exists 𝑐 ∈ R such that

(4.22) ⟨∇2ℜ(𝜂)∇𝑔ℜ(𝜂),Π𝑇ℒ∇ℜ(𝜂)⟩ ≤ 𝑐 · ∥Π𝑇ℒ∇ℜ(𝜂)∥2 for all 𝜂 ∈ int(𝒩),

whereΠ𝑇ℒ denotes the Euclidean projection onto the tangent space ofℒ. Then for any 𝜂0 ∈ int(𝒩)
there exists a unique global solution 𝜂 : [0,∞) → int(𝒩) of the Hessian natural policy gradient
flow (4.18) with 𝜂(0) = 𝜂0. In particular, this covers the unregularized reward ℜ(𝜂) = ⟨𝑟, 𝜂⟩, the
regularized reward ℜ(𝜂) = ⟨𝑟, 𝜂⟩ − 𝜆𝜙(𝜆) and the case ℜ(𝜂) = −𝜆𝜙(𝜂) for 𝜆 ∈ R.

Before we present the proof we give insight into its arguments and provide some

intuition for the condition (4.22), which compares the Hessians of ℜ and 𝜙.

Example 4.19 (A one dimensional example). Let us consider a Hessian gradient flow in

one dimension given by

𝜕𝑡𝑥(𝑡) = 𝜙′′(𝑥(𝑡))−1 𝑓 ′(𝑥(𝑡))
for a suitably convex function 𝜙 : R>0 → R such that 𝜙′(𝑥) → +∞ for 𝑥 ↘ 0 and a

function 𝑓 : R>0 → R. It is our goal to show the well posedness in this case, where the

condition (4.22) takes the form 𝑓 ′′(𝑥)𝜙′′(𝑥)−1 ≤ 𝑐. The only scenario how the Hessian

gradient flow might not exist globally is if 𝑥(𝑡) ↘ 0 for 𝑡 ↗ 𝑇 < +∞, in which case
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𝜙′(𝑥(𝑡)) → +∞. Note that 𝜕𝑡𝜙′(𝑥(𝑡)) = 𝜙′′(𝑥(𝑡))𝜕𝑡𝑥(𝑡) = 𝑓 ′(𝑥(𝑡)) and hence

𝜙′(𝑥(𝑡)) = 𝜙′(𝑥(0)) +
∫ 𝑡

0

𝑓 ′(𝑥(𝑠))d𝑠.

In order to bound this we estimate

𝜕𝑡 𝑓
′(𝑥(𝑡))2 = 2 𝑓 ′(𝑥(𝑡)) 𝑓 ′′(𝑥(𝑡))𝜕𝑡𝑥(𝑡) = 2 𝑓 ′′(𝑥(𝑡))𝜙′′(𝑥(𝑡))−1 𝑓 ′(𝑥(𝑡))2 ≤ 2𝑐 𝑓 ′(𝑥(𝑡))2

and Grönwall’s inequality implies | 𝑓 ′(𝑥(𝑡))|≤ | 𝑓 ′(𝑥(0))|· exp(𝑐𝑡). This yields

𝜙′(𝑥(𝑡)) ≤ 𝜙′(𝑥(0)) + 𝑇 | 𝑓 ′(𝑥(0))| · exp(𝑐𝑇) < +∞

in contradiction to 𝜙′(𝑥(𝑡)) → +∞ for 𝑡 ↗ 𝑇.

The condition 𝑓 ′′(𝑥) ≤ 𝑐𝜙′′(𝑥) can be interpreted as a bound on the curvature of 𝑓 in

terms of the curvature of 𝜙. This bound is indeed necessary for long time existence as for

example the choice 𝜙(𝑥) B 𝑥−1
and 𝑓 (𝑥) B 𝑥−2

leads to the flow 𝑥(𝑡) = 𝑥(0) − 𝑡, which

only exists in R>0 until time 𝑇 = 𝑥(0).
The proof of Theorem 4.18 follows the same ideas as Example 4.19 but we require the

following auxiliary result.

Lemma 4.20 (Lemma 4.3 in [11]). Let 𝐶 ⊆ R𝑑 be a nonempty open convex subset, let 𝑈 ⊆ R𝑑
be a subspace of R𝑑, fix �̂� ∈ 𝜕𝐶 such that (�̂� +𝑈) ∩ 𝐶 ≠ ∅ and denote the normal cone of 𝐶 at �̂�
by 𝑁𝐶

𝐶
(�̂�) = {𝑣 ∈ R𝑑 : ⟨𝑣, 𝑦 − �̂�⟩ ≤ 0 for all 𝑦 ∈ 𝐶}. Then 𝑁𝐶

𝐶
(�̂�) ∩𝑈⊥ = {0}.

Proof. Fix 𝑣 ∈ 𝑁𝐶
𝐶
(�̂�) ∩𝑈⊥ and 𝑦 ∈ (�̂� +𝑈) ∩ 𝐶. Then ⟨𝑣, 𝑦 − �̂�⟩ = 0 since 𝑦 − �̂� ∈ 𝑈 and

𝑣 ∈ 𝑈⊥. As 𝐶 is open, there is 𝜀 > 0 such 𝑦 + 𝑤 ∈ 𝐶 if ∥𝑤∥ ≤ 𝜀. As 𝑣 ∈ 𝑁𝐶
𝐶
(�̂�) it holds

that ⟨𝑣, 𝑤⟩ = ⟨𝑣, 𝑦 + 𝑤 − �̂�⟩ ≤ 0 whenever ∥𝑤∥ ≤ 𝜀, which shows that 𝑣 = 0. □

Proof of Theorem 4.18. We follow the arguments given outlined in Example 4.19 and gen-

eralize them to the multi-dimenstional setting.

Let us denote the Euclidean distance of a point 𝜂 to the boundary 𝜕𝒩 by dist(𝜂, 𝜕𝒩).
The existence and uniqueness of the Hessian gradient flow on [0, 𝑇), where

𝑇 B lim

𝜀→0

sup

{
𝑡 > 0 : inf

𝑠∈[0,𝑡]
dist(𝜂(𝑠), 𝜕𝒩) ≥ 𝜀

}
,

follows from standard arguments, i.e., the Picard-Lindelöf theorem and by gluing solu-

tions if they stay within a compact subset of int(𝒩).
To show 𝑇 = +∞ we assume that 𝑇 < +∞. This implies inf𝑡∈[0,𝑇) dist(𝜂(𝑡), 𝜕𝒩) = 0.

Now we choose a sequence (𝑡𝑛)𝑛∈N ⊆ [0, 𝑇) such that dist(𝜂(𝑡𝑛), 𝜕𝒩) → 0 for 𝑛 → ∞.

Then surely 𝑡𝑛 → 𝑇 for 𝑛 →∞ since inf𝑠∈[0,𝑡] dist(𝜂(𝑠), 𝜕𝒩) > 0 for 𝑡 < 𝑇. By compactness

of 𝒩 and the sphere we can assume without loss of generality that 𝜂(𝑡𝑛) → �̂� ∈ 𝒩 and

∇𝜙(𝜂(𝑡𝑛))
∥∇𝜙(𝜂(𝑡𝑛))∥ → 𝜈 ∈ R𝒮×𝒜 . Note that �̂� ∈ 𝜕𝒩 since dist(�̂�, 𝜕𝒩) = lim𝑛→∞ dist(𝜂(𝑡𝑛), 𝜕𝒩) = 0.

Since 𝜙 is a Legendre type function this yields ∥∇𝜙(𝜂(𝑡𝑛))∥ → ∞.

Next, we show that 𝜈 ∈ 𝑁𝐶𝒩 (�̂�), where 𝑁𝐶𝒩 (�̂�) denotes the normal cone of 𝒩 at �̂�.

For any 𝜂′ ∈ int(𝒩) the convexity of 𝜙 implies that ⟨∇𝜙(𝜂(𝑡𝑛)) − ∇𝜙(𝜂′), 𝜂′ − 𝜂(𝑡𝑛)⟩ ≤ 0.

Devision by ∥∇𝜙(𝜂(𝑡𝑛))∥ and taking the limit 𝑛 → ∞ yields ⟨𝜈, 𝜂′ − �̂�⟩ ≤ 0 showing

𝜈 ∈ 𝑁𝐶𝒩 (�̂�). By Lemma 4.20 we have 𝜈 ∉ (𝑇ℒ)⊥, where ℒ is the linear space such that
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𝒩 = R𝒮×𝒜≥0
∩ ℒ, see Theorem 3.5 and hence 𝜈0 B Π𝑇ℒ𝜈 ≠ 0, where Π𝑇ℒ denotes the

Euclidean projection onto 𝑇ℒ. For 𝑛 →∞we have〈 ∇𝜙(𝜂(𝑡𝑛))
∥∇𝜙(𝜂(𝑡𝑛))∥

, 𝜈0

〉
→ ⟨𝜈, 𝜈0⟩ = ∥𝜈0∥ > 0

and therefore

(4.23) ⟨∇𝜙(𝜂(𝑡𝑛)), 𝜈0⟩ → ∞ for 𝑛 → +∞.

Note that 𝜕𝑡∇𝜙(𝜂(𝑡)) = ∇2𝜙(𝜂(𝑡))𝜕𝑡𝜂(𝑡) = ∇2𝜙(𝜂(𝑡))∇𝑔ℜ(𝜂(𝑡)). Integration and (4.19)

yields

⟨∇𝜙(𝜂(𝑡𝑛)), 𝜈0⟩ =
〈∫ 𝑡𝑛

0

∇2𝜙(𝜂(𝑠))∇𝑔ℜ(𝜂(𝑠))d𝑠 + ∇𝜙(𝜂0), 𝜈0

〉
= ⟨∇𝜙(𝜂0), 𝜈0⟩ +

∫ 𝑡𝑛

0

⟨∇ℜ(𝜂(𝑠)), 𝜈0⟩d𝑠

= ⟨∇𝜙(𝜂0), 𝜈0⟩ +
∫ 𝑡𝑛

0

⟨Π𝑇ℒ∇ℜ(𝜂(𝑠)), 𝜈0⟩d𝑠

≤ ∥∇𝜙(𝜂0)∥ +
∫ 𝑡𝑛

0

∥Π𝑇ℒ∇ℜ(𝜂(𝑠))∥d𝑠.

(4.24)

To bound ∥Π𝑇ℒ∇ℜ(𝜂(𝑠))∥ we use (4.22) and estimate

𝜕𝑡 ∥Π𝑇ℒ∇ℜ(𝜂(𝑡))∥2 = 2⟨Π𝑇ℒ∇ℜ(𝜂(𝑡)), 𝜕𝑡Π𝑇ℒ∇ℜ(𝜂(𝑡))⟩
= 2⟨Π𝑇ℒ∇ℜ(𝜂(𝑡)),Π𝑇ℒ𝜕𝑡∇ℜ(𝜂(𝑡))⟩
= 2⟨Π𝑇ℒ∇ℜ(𝜂(𝑡)), 𝜕𝑡∇ℜ(𝜂(𝑡))⟩
= 2⟨Π𝑇ℒ∇ℜ(𝜂(𝑡)),∇2ℜ(𝜂(𝑡))𝜕𝑡𝜂(𝑡)⟩
= 2⟨Π𝑇ℒ∇ℜ(𝜂(𝑡)),∇2ℜ(𝜂(𝑡))∇𝑔ℜ(𝜂(𝑡))⟩
≤ 2𝑐∥Π𝑇ℒ∇ℜ(𝜂(𝑡))∥2.

Now Grönwall’s inequality yields ∥Π𝑇ℒ∇ℜ(𝜂(𝑡))∥ ≤ ∥Π𝑇ℒ∇ℜ(𝜂0)∥ · exp(𝑐𝑡). Together

with (4.24) this implies

⟨∇𝜙(𝜂(𝑡𝑛)), 𝜈0⟩ ≤ ∥∇𝜙(𝜂0)∥ + 𝑇 · ∥∇ℜ(𝜂0)∥ · exp(𝑐𝑇) < +∞

contradicting (4.23). Therefore, we have shown that 𝑇 = +∞.

We now verify the condition (4.22) for the individual cases. If ℜ is the unregularized

reward, then ∇2ℜ = 0 and hence (4.22) holds with 𝑐 = 0. If ℜ(𝜂) = ⟨𝑟, 𝜂⟩ − 𝜆𝜙(𝜂) or

ℜ(𝜂) = −𝜆𝜙(𝜂) for some 𝜆 ∈ R, then ∇2ℜ = −𝜆∇2𝜙 and (4.19) yields

⟨∇2ℜ(𝜂)∇𝑔ℜ(𝜂),Π𝑇ℒ∇ℜ(𝜂)⟩ = −𝜆⟨∇2𝜙(𝜂)∇𝑔ℜ(𝜂),Π𝑇ℒ∇ℜ(𝜂)⟩
= −𝜆⟨∇ℜ(𝜂),Π𝑇ℒ∇ℜ(𝜂)⟩
= −𝜆∥Π𝑇ℒ∇ℜ(𝜂)∥2

and (4.22) holds with 𝑐 = −𝜆. □
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4.3.2. Convergence of unregularized NPG flows. Now, we study the case of un-

regularized reward, i.e., where the objective in state-action space is linear and given by

ℜ(𝜂) = ⟨𝑟, 𝜂⟩ for Kakade’s as well as 𝜎-NPG flows, which include Morimura’s NPG as a

special case. In this case we obtain global convergence guarantees including rates.

Sublinear rates. Recall that Kakade’s natural policy gradient is induced by the condi-

tional entropy 𝜙𝐶 defined in (4.3). The Bregman divergence of the conditional entropy,

see [233], is given by the conditional relative entropy

𝐷𝜙𝐶 (𝜂1 , 𝜂2) =
∑
𝑠,𝑎

𝜂1(𝑠, 𝑎) log

(
𝜂1(𝑠, 𝑎)
𝜂2(𝑠, 𝑎)

)
−

∑
𝑠,𝑎

𝜂1(𝑠, 𝑎) log

(∑
𝑎′ 𝜂1(𝑠, 𝑎′)∑
𝑎′ 𝜂2(𝑠, 𝑎′)

)
= 𝐷𝐾𝐿(𝜂1 , 𝜂2) − 𝐷𝐾𝐿(𝜌1 , 𝜌2) =

∑
𝑠

𝜌1(𝑠)𝐷𝐾𝐿(𝜂1(·|𝑠), 𝜂2(·|𝑠)),

which has been studied in the context of mirror descent algorithms of the linear program-

ming formulation of MDPs in [218].

Theorem 4.21 (Convergence of Kakade’s NPG flow for unregularized reward). Consider
Setting 4.14 with 𝜙 = 𝜙𝐶 being the conditional entropy defined in (4.9) and denote the unreg-
ularized reward by ℜ(𝜂) = ⟨𝑟, 𝜂⟩ and fix an element 𝜂0 ∈ int(𝒩). Then there exists a unique
global solution 𝜂 : [0,∞) → int(𝒩) of Kakade’s NPG flow with initial condition 𝜂(0) = 𝜂0, i.e.,
of (4.18) with 𝜙 = 𝜙𝐶 , and it holds that

(4.25) 𝑅∗ −ℜ(𝜂(𝑡)) ≤ 𝑡−1𝐷𝜙𝐶 (𝜂∗ , 𝜂0) = 𝑡−1

∑
𝑠

𝜌∗(𝑠)𝐷𝐾𝐿(𝜋∗(·|𝑠),𝜋0(·|𝑠)),

where 𝐷𝜙𝐶 denotes the conditional relative entropy and 𝜂∗ an arbitrary maximizer. In particular,
dist(𝜂(𝑡), 𝑆) ∈ 𝑂(𝑡−1), where 𝑆 = {𝜂 ∈ 𝒩 : ⟨𝑟, 𝜂⟩ = 𝑅∗} and dist denotes the Euclidean distance.
Proof. The flow is well posed by Theorem 4.18 and Example 4.17. Now the result follows

directly from Lemma 4.15. □

Now we elaborate the consequences of the general convergence result Lemma 4.15 for

the case of 𝜎-NPG flows. Here, the study is more delicate since for 𝜎 > 2 we typically have

𝜙𝜎(𝜂∗) = ∞ since the maximizer 𝜂∗ lies at the boundary unless the reward is constant.

Theorem 4.22 (Convergence of 𝜎-NPG flow for unregularized reward). Consider Set-
ting 4.14 with 𝜙 = 𝜙𝜎 for some 𝜎 ∈ [1,∞) being defined in (4.1). Denote the unregularized
reward by ℜ(𝜂) = ⟨𝑟, 𝜂⟩ and fix an element 𝜂0 ∈ int(𝒩). Then there exists a unique global
solution 𝜂 : [0,∞) → int(𝒩) of the Hessian NPG flow (4.18) with inital condition 𝜂(0) = 𝜂0 and
and there is a constant 𝑐 = 𝑐(𝜎) > 0 such that

(4.26) 𝑅∗ −ℜ(𝜂(𝑡)) ≤


𝑡−1𝐷𝜎(𝜂∗ , 𝜂0) for 𝜎 ∈ [1, 2)
𝑐 log(𝑡)𝑡−1 for 𝜎 = 2

𝑐𝑡𝜎−3 for 𝜎 ∈ (2,∞)

for an abitrary maximizer 𝜂∗. In particular, we have

(4.27) dist(𝜂(𝑡), 𝑆) ∈


𝑂(𝑡−1) for 𝜎 ∈ [1, 2)
𝑂(log(𝑡)𝑡−1) for 𝜎 = 2

𝑂(𝑡𝜎−3) for 𝜎 ∈ (2,∞),
113



where 𝑆 = {𝜂 ∈ 𝒩 : ⟨𝑟, 𝜂⟩ = 𝑅∗} denotes the solution set and dist denotes the Euclidean distance.
This result covers Morimura’s NPG flow as the special case with 𝜎 = 1.
Proof. The global existence follows from Theorem 4.18 and Example 4.17 and hence we

can apply Lemma 4.15. For 𝜎 ∈ [1, 2) we have that 𝜙𝜎(𝜂∗) < ∞ and hence 𝑅∗ − ℜ(𝜂(𝑡)) ≤
𝐷𝜙𝜎 (𝜂∗ , 𝜂0)𝑡−1

. Consider now the case 𝜎 = 2 and pick 𝑣 ∈ R𝒮×𝒜 such that 𝜂𝛿 B 𝜂∗ + 𝛿𝑣 ∈
int(𝒩) for small 𝛿 > 0. Then it holds that

𝑅∗ −ℜ(𝜂(𝑡)) = 𝑅∗ − ⟨𝑟, 𝜂𝛿⟩ + ⟨𝑟, 𝜂𝛿⟩ −ℜ(𝜂(𝑡)) = 𝑂(𝛿) + 𝐷𝜙𝜎 (𝜂𝛿 , 𝜂0)𝑡−1

= 𝑂(𝛿) +
(
𝜙𝜎(𝜂𝛿) − 𝜙𝜎(𝜂0) − ⟨∇𝜙𝜎(𝜂0), 𝜂𝛿 − 𝜂0⟩

)
𝑡−1

= 𝑂(𝛿) + 𝑂(log(𝛿) + 1)𝑡−1.

Setting 𝛿 = 𝑡−1
we obtain 𝑅∗ − ℜ(𝜂(𝑡)) = 𝑂(𝑡−1) + 𝑂((log(𝑡−1) + 1)𝑡−1) = 𝑂(log(𝑡)𝑡−1)

for 𝑡 → ∞. For 𝜎 ∈ (2,∞) the calculation follows in analogue fashion. Noting that

dist(𝜂(𝑡), 𝑆) ∼ 𝑅∗ −ℜ(𝜂(𝑡)) finishes the proof. □

Theorem 4.21 and Theorem 4.22 show global convergence of 𝜎-NPG and Kakade’s

NPG flows for unregularized rewards. Note that the reason why this is possible is that

one does not work with a regularized objective but rather with a geometry arising from a

regularization but with the original linear objective. For 𝜎 < 1 the flow may reach a face

of the feasible set in finite time; see Figure 4.3. For 𝜎 ≥ 3 Theorem 4.22 is uninformative

since 𝑡𝜎−3
is non decreasing but ℜ(𝜂(𝑡)) is non increasing as

𝜕𝑡ℜ(𝜂(𝑡)) = 𝑔𝜂(𝑡)(𝜕𝑡𝜂(𝑡),∇𝑔ℜ(𝜂(𝑡))) = 𝑔𝜂(𝑡)(∇𝑔ℜ(𝜂(𝑡)),∇𝑔ℜ(𝜂(𝑡))) ≥ 0.

However, by Lemma 4.15 the flows converge in objective value since they are well posed

as the functions 𝜙𝜎 are Legendre-type functions for 𝜎 ≥ 1; see Example 4.17. It would

be interesting to expand the theoretical analysis to clarify the convergence rate in this

particular case. For larger 𝜎 the plateau problem becomes more pronounced, as can be

seen in Figure 4.3. Further, if multiple maximizers exist and the objective ℜ is linear one

can show that the trajectory converges towards the maximizer that is closest to the initial

point 𝜂0 with respect to the Bregman divergence [11, Corollary 4.8].

Faster rates for 𝜎 ∈ [1, 2) and Kakade’s NPG. Now we obtain improved and even linear

convergence rates for Kakade’s and Morimura’s NPG flow for unregularized problems.

To this end, we first formulate the following general result.

Lemma 4.23 (Convergence rates for gradient flow trajectories). Consider Setting 4.14, assume
that there is a global solution 𝜂 : [0,∞) → int(𝒩) of the Hessian gradient flow (4.18). Assume
that there is an optimizer 𝜂∗ ∈ 𝒩 and assume that 𝜂(𝑡) → 𝜂∗ for 𝑡 → ∞ and that there exist
𝜔 ∈ (0,∞), 𝜏 ∈ [1,∞) and 𝑇 ≥ 0 such that

(4.28) ℜ(𝜂∗) −ℜ(𝜂(𝑡)) ≥ 𝜔𝐷𝜙(𝜂∗ , 𝜂(𝑡))𝜏 for all 𝑡 ≥ 𝑇.

Then there is a constant 𝑐 > 0, possibly depending on 𝑇 and 𝜂(0), such that
(i) if 𝜏 = 1, then 𝐷𝜙(𝜂∗ , 𝜂(𝑡)) ≤ 𝑐𝑒−𝜔𝑡 for all 𝑡 ≥ 0,
(ii) if 𝜏 > 1, then 𝐷𝜙(𝜂∗ , 𝜂(𝑡)) ≤ 𝑐𝑡−1/(𝜏−1) for all 𝑡 ≥ 0.

The lower bound (4.28) can be interpreted as a form of strong convexity under which

the objective value controls the Bregman divergence and hence convergence in objective

value implies convergence of the trajectories in the sense of the Bregman divergence.
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Proof. The statement of this result can be found in [11, Proposition 4.9], where however

stronger assumptions are made and hence we provide a short proof. Using (4.21) and (4.28)

we find that for 𝑡 ≥ 𝑇 it holds that

𝜕𝑡𝐷𝜙(𝜂∗ , 𝜂(𝑡)) ≤ ℜ(𝜂(𝑡)) −ℜ(𝜂∗) ≤ −𝜔𝐷𝜙(𝜂∗ , 𝜂(𝑡))𝜏.

A standard integration of the differential inequality yields the claim. □

In order to apply this result to natural policy gradient flows we need to bound the

respective Bregman divergences by the suboptimality in the linear objective. For this we

establish the following two lemmata where we bound the 1-norm by the suboptimality

gap as well as the KL-divergence between probability distributions by the 1-norm.

Lemma 4.24. Consider a polytope 𝑃 = R𝑑 and a vertex 𝑥∗ ∈ 𝑃 that is the unique maximizer of the
linear function 𝑥 ↦→ ⟨𝑣, 𝑥⟩ over 𝑃. Let us denote the set of neighboring vertices2 of 𝑥∗ by 𝑁(𝑥∗).
Then

(4.29) Δ B min

{
⟨𝑣, 𝑥∗ − 𝑥⟩
∥𝑥∗ − 𝑥∥1

: 𝑥 ∈ 𝑁(𝑥∗)
}
> 0

and satisfies

(4.30) ⟨𝑣, 𝑥∗⟩ − ⟨𝑣, 𝑥⟩ ≥ Δ · ∥𝑥∗ − 𝑥∥1 for all 𝑥 ∈ 𝑃.

Proof. Note that since 𝑥∗ is the unique maximizer of 𝑥 ↦→ ⟨𝑣, 𝑥⟩ over 𝑃 it holds that

⟨𝑣, 𝑥∗ − 𝑥⟩ > 0 for every neighboring vertex 𝑥 ∈ 𝑁(𝑥∗), which implies Δ > 0. Further, the

polytope 𝑃 is contained in the cone

𝐶 =

𝑥∗ +
∑

𝑦∈𝑁(𝑥∗)
𝛼𝑦(𝑦 − 𝑥∗) : 𝛼𝑦 ≥ 0 for all 𝑦 ∈ 𝑁(𝑥∗)


generated by the edges containing 𝑥∗, see [318, Lemma 3.6]. Hence, for 𝑥 ∈ 𝑃 there are

non negative weights 𝛼𝑦 ≥ 0 for 𝑦 ∈ 𝑁(𝑥∗) such that

𝑥 = 𝑥∗ +
∑

𝑦∈𝑁(𝑥∗)
𝛼𝑦(𝑦 − 𝑥∗).

Now we compute

⟨𝑣, 𝑥∗⟩ − ⟨𝑣, 𝑥⟩ =
∑

𝑦∈𝑁(𝑥∗)
𝛼𝑦 ⟨𝑣, 𝑥∗ − 𝑦⟩ ≥ Δ ·

∑
𝑦∈𝑁(𝑥∗)

𝛼𝑦 ∥𝑥∗ − 𝑦∥1.(4.31)

Further, by the triangle inequality we have

∥𝑥∗ − 𝑥∥1 =

 ∑
𝑦∈𝑁(𝑥∗)

𝛼𝑦(𝑦 − 𝑥∗)


1

≤
∑

𝑦∈𝑁(𝑥∗)
𝛼𝑦 ∥𝑦 − 𝑥∗∥1 ,

which completes the proof. □

Lemma 4.25. Consider a finite set𝒳 and a probability distribution 𝜇 ∈ Δ𝒳 as well 𝜀 ∈ (0, 1) and
set

(4.32) 𝛿 B
𝜀

1 + 𝜀
·min

{
𝜇𝑥 : 𝑥 ∈ 𝒳 and 𝜇𝑥 > 0

}
> 0.

2Two vertices of a polytope 𝑃 are called neighbors if their convex hull is a face of 𝑃.
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Then for all 𝜈 ∈ Δ𝒳 satisfying ∥𝜇 − 𝜈∥∞ ≤ 𝛿 it holds that

(4.33) 𝐷𝐾𝐿(𝜇, 𝜈) ≤
(

1

2

+ 𝜀

)
· ∥𝜇 − 𝜈∥1.

Proof. We bound the individual summands in the KL-divergence

𝐷𝐾𝐿(𝜇, 𝜈) =
∑
𝑥∈𝒳

𝜇𝑥 log

(
𝜇𝑥
𝜈𝑥

)
=

∑
𝑥∈𝑋

𝜇𝑥 log

(
𝜇𝑥
𝜈𝑥

)
,

where 𝑋 B {𝑥 ∈ 𝒳 : 𝜇𝑥 > 0}. If 𝜇𝑥 , 𝜈𝑥 > 0 then

𝜇𝑥 log

(
𝜇𝑥
𝜈𝑥

)
= 𝜇𝑥

(
log(𝜈𝑥 + (𝜇𝑥 − 𝜈𝑥)) − log(𝜈𝑥)

)
≤ 𝜇𝑥

(
log(𝜈𝑥) +

𝜇𝑥 − 𝜈𝑥
𝜈𝑥

− log(𝜈𝑥)
)

= (𝜇𝑥 − 𝜈𝑥) ·
𝜇𝑥
𝜈𝑥
,

(4.34)

where we used the convexity log(𝑡 + ℎ) ≤ log(𝑡) + ℎ/𝑡 for 𝑡 > 0, 𝑡 + ℎ > 0. If ∥𝜇− 𝜈∥∞ ≤ 𝛿
then

𝜈𝑥 ≥ 𝜇𝑥 − 𝛿 ≥ 𝜇𝑥
(
1 − 𝜀

1 + 𝜀

)
=

𝜇𝑥
1 + 𝜀

as well as

𝜈𝑥 ≤ 𝜇𝑥 + 𝛿 ≤ 𝜇𝑥
(
1 + 𝜀

1 + 𝜀

)
≤ 𝜇𝑥

(
1 + 𝜀

1 − 𝜀

)
=

𝜇𝑥
1 − 𝜀

and therefore 1 − 𝜀 ≤ 𝜇𝑥
𝜈𝑥
≤ 1 + 𝜀. If 𝜇𝑥 ≥ 𝜈𝑥 then

(𝜇𝑥 − 𝜈𝑥) ·
𝜇𝑥
𝜈𝑥
≤ (1 + 𝜀)(𝜇𝑥 − 𝜈𝑥) = 𝜇𝑥 − 𝜈𝑥 + 𝜀|𝜇𝑥 − 𝜈𝑥 |

and if 𝜇𝑥 < 𝜈𝑥 then

(4.35) (𝜇𝑥 − 𝜈𝑥) ·
𝜇𝑥
𝜈𝑥
≤ (1 − 𝜀)(𝜇𝑥 − 𝜈𝑥) = 𝜇𝑥 − 𝜈𝑥 + 𝜀|𝜇𝑥 − 𝜈𝑥 |.

Together with (4.34) summing over 𝑥 yields

(4.36) 𝐷𝐾𝐿(𝜇, 𝜈) ≤
∑
𝑥∈𝑋
(𝜇𝑥 − 𝜈𝑥) + 𝜀

∑
𝑥∈𝑋
|𝜇𝑥 − 𝜈𝑥 | ≤

∑
𝑥∈𝑋
(𝜇𝑥 − 𝜈𝑥) + 𝜀 · ∥𝜇 − 𝜈∥1

and hence it remains to estimate the first part. Set 𝑋 𝑐 B 𝒳 \ 𝑋 then∑
𝑥∈𝑋
(𝜇𝑥 − 𝜈𝑥) =

∑
𝑥∈𝒳
(𝜇𝑥 − 𝜈𝑥) −

∑
𝑥∈𝑋 𝑐

(𝜇𝑥 − 𝜈𝑥) = −
∑
𝑥∈𝑋 𝑐

(𝜇𝑥 − 𝜈𝑥) =
∑
𝑥∈𝑋 𝑐

|𝜇𝑥 − 𝜈𝑥 |

since 𝜇𝑥 = 0 for 𝑥 ∈ 𝑋 𝑐
. Now we can estimate

2

∑
𝑥∈𝑋
(𝜇𝑥 − 𝜈𝑥) =

∑
𝑥∈𝑋
(𝜇𝑥 − 𝜈𝑥) +

∑
𝑥∈𝑋 𝑐

|𝜇𝑥 − 𝜈𝑥 | ≤ ∥𝜇 − 𝜈∥1.

Together with (4.36) this yields (4.33). □

Combining Lemma 4.24 and Lemma 4.25 yields 𝑐𝐷𝐾𝐿(𝜇∗ , 𝜇) ≤ ⟨𝑣, 𝜇∗⟩ − ⟨𝑣, 𝜇⟩ for all

𝑐 ∈ (0, 2Δ) if 𝑃 ⊆ Δ𝒳 . This estimate of the KL-divergence of a point to the solution

of a linear program in terms of the optimality gap establishes the condition (4.28) in

Lemma 4.23 and hence we obtain 𝑂(𝑒−𝑐𝑡) convergence of the gradient flow with respect

to the Fisher metric.
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Theorem 4.26 (Linear convergence of unregularized Kakade’s NPG flow). Consider Set-
ting 4.14, where 𝜙 = 𝜙𝐶 is the conditional entropy defined in (4.9) and assume that there is a
unique maximizer 𝜂∗ of the unregularized reward ℜ and denote its state-marginal by 𝜌∗. Then for
any 𝑐1 ∈ (0, 2Δ) there is a constant 𝑐2 = 𝑐2(𝜂0 , 𝑐1) such that

(4.37) 𝐷𝜙𝐶 (𝜂∗ , 𝜂(𝑡)) =
∑
𝑠

𝜌∗(𝑠)𝐷𝐾𝐿(𝜋∗(·|𝑠),𝜋𝑡(·|𝑠)) ≤ 𝑐2𝑒
−𝑐1𝑡

and

(4.38) 𝑅∗ −ℜ(𝜂(𝑡)) ≤ 2𝑐2 |𝒮||𝒜| · ∥𝑟∥∞
(1 − 𝛾)min𝑠 𝜌∗(𝑠)

· 𝑒−𝑐1𝑡

for all 𝑡 ≥ 0, where

Δ = min

{ ⟨𝑟, 𝜂∗ − 𝜂⟩
∥𝜂∗ − 𝜂∥1

: 𝜂 ∈ 𝑁(𝜂∗)
}
> 0(4.39)

and 𝑁(𝜂∗) denotes the neighboring vertices of 𝜂∗ in the state-action polytope𝒩 .
Proof. Let 𝜙𝐶 denote the conditional entropy, so that

𝐷𝜙𝐶 (𝜂∗ , 𝜂) = 𝐷𝐾𝐿(𝜂∗ , 𝜂) − 𝐷𝐾𝐿(𝜌∗ , 𝜌) ≤ 𝐷𝐾𝐿(𝜂∗ , 𝜂)
By Lemma 4.24 and Lemma 4.25 for any 𝑐1 ∈ (0, 2Δ) it holds that

𝑐1𝐷𝜙𝐶 (𝜂∗ , 𝜂) ≤ ℜ(𝜂∗) −ℜ(𝜂).
Hence, Lemma 4.23 guarantees that

𝐷𝜙𝐶 (𝜂∗ , 𝜂(𝑡)) = 𝑐2𝑒
−𝑐1𝑡

for some 𝑐2 = 𝑐2(𝜂0 , 𝑐1) > 0 and it remains to estimate ℜ(𝜂∗) − ℜ(𝜂) = ∥𝑟∥∞ · ∥𝜂∗ − 𝜂∥1
by the conditional relative entropy 𝐷𝜙𝐶 (𝜂∗ , 𝜂). Note that 𝜋∗ is a deterministic policy and

hence we can write 𝜋∗(𝑎∗𝑠 |𝑠) = 1 and estimate

𝐷𝜙𝐶 (𝜂∗ , 𝜂) =
∑
𝑠

𝜌∗(𝑠)𝐷𝐾𝐿(𝜋∗(·|𝑠),𝜋∗(·|𝑠)) = −
∑
𝑠

𝜌∗(𝑠) log(𝜋(𝑎∗𝑠 |𝑠))

≥
∑
𝑠

𝜌∗(𝑠)(1 − 𝜋(𝑎∗𝑠 |𝑠)) = 2
−1

∑
𝑠

𝜌∗(𝑠)∥𝜋∗(·|𝑠) − 𝜋(·|𝑠)∥1

≥ 2
−1

(
min

𝑠
𝜌∗(𝑠)

)
· ∥𝜋∗ − 𝜋∥1 ,

(4.40)

where we have used log(𝑡) ≤ 𝑡 − 1 as well as

∥𝜋∗(·|𝑠) − 𝜋(·|𝑠)∥1 =
∑
𝑎≠𝑎∗𝑠

|𝜋∗(𝑎 |𝑠) − 𝜋(𝑎 |𝑠)| + |𝜋∗(𝑎 |𝑠) − 𝜋(𝑎 |𝑠)|

=
∑
𝑎≠𝑎∗𝑠

𝜋(𝑎 |𝑠) + (1 − 𝜋(𝑎∗𝑠 |𝑠)) = 2(1 − 𝜋(𝑎∗𝑠 |𝑠)).

By Lemma 3.13 it holds that

∥𝜂𝜋 − 𝜂𝜋′∥1 ≤ |𝒮||𝒜| · ∥𝜂𝜋 − 𝜂𝜋
′∥∞ ≤

|𝒮||𝒜|
1 − 𝛾

· ∥𝜋 − 𝜋′∥1

and hence

(4.41) ∥𝜂∗ − 𝜂(𝑡)∥1 ≤
|𝒮||𝒜|
1 − 𝛾

· ∥𝜋∗ − 𝜋(𝑡)∥1 ≤
2|𝒮||𝒜|

(1 − 𝛾)min𝑠 𝜌∗(𝑠)
· 𝐷𝜙𝐶 (𝜂∗ , 𝜂(𝑡)).
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Together with 𝑅∗−ℜ(𝜂(𝑡)) = ⟨𝑟, 𝜂∗−𝜂(𝑡)⟩ ≤ ∥𝑟∥∞ · ∥𝜂∗−𝜂(𝑡)∥1 this concludes the proof. □

In the proof we rely on the estimate 𝑐1𝐷𝜙𝐶 (𝜂∗ , 𝜂) ≤ 𝑐1𝐷𝐾𝐿(𝜂∗ , 𝜂) ≤ 𝑅∗ − ⟨𝑟, 𝜂⟩, which

might not be tight and an estimate of the form 𝑐𝐷𝜙𝐶 (𝜂∗ , 𝜂) ≤ 𝑅∗ − ⟨𝑟, 𝜂⟩ for a constant

𝑐 > 𝑐1 would improve Theorem 4.26.

Theorem 4.27 (Improved convergence rates for 𝜎-NPG flow). Consider Setting 4.14, where
𝜙 = 𝜙𝜎 for some 𝜎 ∈ [1, 2) as defined in (4.1), and assume that there is a unique maximizer 𝜂∗ of
the unregularized reward ℜ with state-marginal 𝜌∗ and consider Δ > 0 defined in (4.39). Then for
any 𝑐1 ∈ (0, 2Δ) there are constants 𝑐2 = 𝑐2(𝜂0 , 𝑐1), 𝑐3 = 𝑐3(𝜂0) > 0, 𝑐4 = 𝑐4(𝜂0) > 0 such that

(4.42) 𝐷𝐾𝐿(𝜂∗ , 𝜂(𝑡)) ≤ 𝑐2𝑒
−𝑐1𝑡 and 𝑅∗ −ℜ(𝜂(𝑡)) ≤ 2𝑐2 |𝒮||𝒜|·∥𝑟∥∞

(1 − 𝛾)min𝑠 𝜌∗(𝑠)
· 𝑒−𝑐1𝑡 if 𝜎 = 1

for all 𝑡 ≥ 0 and

(4.43) 𝐷𝜎(𝜂∗ , 𝜂(𝑡)) ≤ 𝑐3𝑡
−(2−𝜎)/(𝜎−1) and 𝑅∗ −ℜ(𝜂(𝑡)) ≤ 𝑐4𝑡

−1/(𝜎−1) if 𝜎 ∈ (1, 2)

for all 𝑡 ≥ 0, where 𝐷𝜎 denotes the Bregman divergence induced by 𝜙𝜎.
Proof. The case 𝜎 = 1 can be treated similarly to the case of Kakade’s NPG, where by

Lemma 4.24 and Lemma 4.25 one obtains

𝑐1 · 𝐷𝐾𝐿(𝜂∗ , 𝜂) ≤ ℜ(𝜂∗) −ℜ(𝜂)

for 𝑐1 ∈ (0, 2Δ) and 𝜂 in a neighborhood of 𝜂∗ and hence Lemma 4.23 yields the existence

of 𝑐2 = 𝑐2(𝜂0 , 𝑐1) > 0 such that

𝐷𝐾𝐿(𝜂∗ , 𝜂(𝑡)) ≤ 𝑐2𝑒
−𝑐1𝑡 .

Since 𝐷𝜙𝐶 ≤ 𝐷𝐾𝐿, (4.41) yields

ℜ(𝜂∗) −ℜ(𝜂(𝑡)) ≤ 2𝑐2 |𝒮||𝒜| · ∥𝑟∥∞
(1 − 𝛾)min𝑠 𝜌∗(𝑠)

· 𝐷𝐾𝐿(𝜂∗ , 𝜂(𝑡)).(4.44)

For 𝜎 ∈ (1, 2)we show that (4.28) holds for 𝜏 = (2 − 𝜎)−1 ≥ 1. Recall that

𝐷𝜎(𝜂∗ , 𝜂) =
∑
𝑠,𝑎

𝜂∗(𝑠, 𝑎)2−𝜎
(1 − 𝜎)(2 − 𝜎) −

∑
𝑠,𝑎

𝜂(𝑠, 𝑎)2−𝜎
(1 − 𝜎)(2 − 𝜎) −

∑
𝑠,𝑎

𝜂(𝑠, 𝑎)1−𝜎(𝜂∗(𝑠, 𝑎) − 𝜂(𝑠, 𝑎))
1 − 𝜎

.

We can bound every individual summand by 𝑂(|𝜂∗(𝑠, 𝑎) − 𝜂(𝑠, 𝑎)|) if 𝜂∗(𝑠, 𝑎) > 0 and

𝑂(|𝜂∗(𝑠, 𝑎) − 𝜂(𝑠, 𝑎)|2−𝜎) if 𝜂∗(𝑠, 𝑎) = 0 for 𝜂→ 𝜂∗ respectively. Overall, this shows that

𝐷𝜎(𝜂∗ , 𝜂) = 𝑂(∥𝜂∗ − 𝜂∥2−𝜎) = 𝑂((ℜ(𝜂∗) −ℜ(𝜂))2−𝜎) for 𝜂→ 𝜂∗ ,

where the last estimate holds since 𝜂∗ is the unique minimizer of the linear function ℜ

over the polytope𝒩 . By Lemma 4.23 we obtain

𝐷𝜎(𝜂∗ , 𝜂(𝑡)) = 𝑂(𝑡−1/(𝜏−1)) = 𝑂(𝑡−(2−𝜎)/(𝜎−1)).

It remains to estimate the value of ℜ by means of the Bregman divergence 𝐷𝜎. For this,

we note that ℜ(𝜂∗)−ℜ(𝜂) = ∥𝑟∥∞ · ∥𝜂∗−𝜂∥1) and estimate the individual terms. First, note

that for 𝑥 → 𝑦 (with 𝑥, 𝑦 ≥ 0) it holds that

|𝑥 − 𝑦 | = 𝑂

((
𝑦2−𝜎

(1 − 𝜎)(2 − 𝜎) −
𝑥2−𝜎

(1 − 𝜎)(2 − 𝜎) −
𝑥1−𝜎(𝑦 − 𝑥)

1 − 𝜎

)1/(2−𝜎))
.
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For 𝑦 = 0 this is immediate and for 𝑦 > 0 the local strong convexity of 𝑥 ↦→ 𝑥2−𝜎
around

𝑦 implies

|𝑥 − 𝑦 | = 𝑂

((
𝑦2−𝜎 − 𝑥2−𝜎 − (2 − 𝜎)𝑥1−𝜎(𝑦 − 𝑥)

)
1/2

)
= 𝑂

((
𝑦2−𝜎 − 𝑥2−𝜎 − (2 − 𝜎)𝑥1−𝜎(𝑦 − 𝑥)

)
1/(2−𝜎)

)
for 𝑥 → 𝑦. Now, Jensen’s inequality yields

∥𝜂∗ − 𝜂∥1 = 𝑂(𝐷𝜎(𝜂∗ , 𝜂)1/(2−𝜎)).

Overall, we obtain

ℜ(𝜂∗) −ℜ(𝜂(𝑡)) = 𝑂(∥𝜂∗ − 𝜂(𝑡)∥1/(2−𝜎)
1

) = 𝑂(𝑡−1/(1−𝜎)).

□

Compared to Theorem 4.22 the above Theorem 4.27 improves the convergence rate of

𝑂(𝑡−1) for parameters 𝜎 ∈ [1, 2). Later, we conduct numerical experiments that indicate

that the rates 𝑂(𝑡−1/(𝜎−1)) also hold for 𝜎 ≥ 2 and are tight.

Remark 4.28 (Alternative bound). When bounding the suboptimality in terms of the KL

divergence in order to obtain the bound (4.42) we use (4.44), i.e., we estimate ∥𝜂∗ − 𝜂∥1
in terms of the conditional relative entropy 𝐷𝜙𝐶 , which is trivially bounded by the KL

divergence. Hence, if we directly bound ∥𝜂∗ − 𝜂∥1 by the KL divergence, we obtain

a different bound, which can be tighter in certain instances. The optimal policy 𝜋∗

corresponding to 𝜂∗ is deterministic and hence for 𝑠 ∈ 𝒮 there is 𝑎∗𝑠 ∈ 𝒜 such that

𝜋∗(𝑎∗𝑠 |𝑠) = 1. Using log(𝑡) ≤ log(𝑠) + 𝑡−𝑠
𝑠 we estimate

𝐷𝐾𝐿(𝜂∗ , 𝜂) =
∑
𝑠

𝜂∗(𝑠, 𝑎∗𝑠) log

(
𝜂∗(𝑠, 𝑎∗𝑠)
𝜂(𝑠, 𝑎∗𝑠)

)
≥

∑
𝑠

𝜂∗(𝑠, 𝑎∗𝑠) ·
𝜂∗(𝑠, 𝑎∗𝑠) − 𝜂(𝑠, 𝑎∗𝑠)

𝜂∗(𝑠, 𝑎∗𝑠)
= 1−

∑
𝑠

𝜂(𝑠, 𝑎∗𝑠).

Note that 𝜂∗ is the unique maximizer of the linear function

ℓ : 𝒩 → R, 𝜂 ↦→
∑
𝑠

𝜂(𝑠, 𝑎∗𝑠)

since for suboptimal 𝜂𝜋 ∈ 𝒩 there is 𝑠 ∈ 𝒮 such that 𝜋(𝑎∗𝑠 |𝑠) < 1 and hence 𝜂(𝑠, 𝑎∗𝑠) =
𝜌𝜋(𝑠)𝜋(𝑎∗𝑠 |𝑠) < 𝜌𝜋(𝑠) and thus ℓ (𝜂) < 1. Therefore, we can apply Lemma 4.24 and obtain

∥𝜂∗ − 𝜂∥1 ≤ 𝛿−1(1 − ℓ (𝜂)) ≤ 𝛿−1𝐷𝐾𝐿(𝜂∗ , 𝜂),

where

𝛿 = min

{
1 −∑

𝑠 𝜂(𝑠, 𝑎∗𝑠)
∥𝜂∗ − 𝜂∥1

: 𝜂 ∈ 𝑁(𝜂∗)
}
.

In order to estimate 𝛿 we fix 𝜂𝜋 ∈ 𝑁(𝜂∗) and note that 𝜋 ∈ 𝑁(𝜋∗) is a deterministic policy

with 𝜋(𝑎𝑠 |𝑠) = 1 and |{𝑠 ∈ 𝒮 : 𝑎𝑠 ≠ 𝑎∗𝑠}|= 1, lets say 𝑎𝑠0
≠ 𝑎∗𝑠0

. Then

1 − ℓ (𝜂) = 1 −
∑
𝑠

𝜌𝜋(𝑠)𝜋(𝑎∗𝑠 |𝑠) = 1 −
∑
𝑠≠𝑠0

𝜌𝜋(𝑠) = 𝜌𝜋(𝑠0) ≥ (1 − 𝛾)𝜇(𝑠0) ≥ (1 − 𝛾)min

𝑠
𝜇(𝑠).
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Further, we have ∥𝜂∗ − 𝜂∥1 ≤ 2 and thus 𝛿 ≥ (1−𝛾)min𝑠 𝜇(𝑠)
2

. If min𝑠 𝜇(𝑠) > 0 this implies

together with 𝐷𝐾𝐿(𝜂∗ , 𝜂(𝑡)) ≤ 𝑐2𝑒
−𝑐1𝑡

that

(4.45) 𝑅∗ −ℜ(𝜂(𝑡)) ≤ ∥𝑟∥∞ · ∥𝜂 − 𝜂(𝑡)∥1 ≤
2𝑐2∥𝑟∥∞

(1 − 𝛾)min𝑠 𝜇(𝑠)
· 𝑒−𝑐1𝑡 .

This bound becomes tightest if we choose 𝜇 to be the uniform distribution where it

evaluates to

(4.46)

2𝑐2 |𝒮| · ∥𝑟∥∞
1 − 𝛾

· 𝑒−𝑐1𝑡 .

In comparison, the bound (4.42) becomes tightest if 𝜌∗ is the uniform norm in which it

would evaluate to

2𝑐2 |𝒮|2 |𝒜|·∥𝑟∥∞
1 − 𝛾

· 𝑒−𝑐1𝑡 ,

which is bigger compared to (4.46). However, the tighter bound (4.46) and also (4.45)

requires the initial distribution 𝜇 to be the uniform distribution or have full support,

repsectively. However, there are instances where this is not satisfied and the positivity

Assumption 3.3 still holds, in which case the bound (4.42) remains valid.

Remark 4.29 (Non-unique optimizers). Both Theorem 4.26 and Theorem 4.27 are for-

mulated under the assumption of unique optimizers since we use Lemma 4.24. The

assumption that the linear function 𝜂 ↦→ ⟨𝑟, 𝜂⟩ possesses a unique optimizer over the

state-action polytope 𝒩 is satisfied for almost all 𝑟 ∈ R𝒮×𝒜 . If there is a non trivial face

𝐹∗ of optimizer the bound on the exponent 2Δ of the linear convergence deteriorates.

However, in the case of non unique optimizers the gradient flow converges towards the

Bregman projection 𝜂∗ of the initial condition 𝜂0 onto the set 𝐹∗ of optimizers, which

describes the implicit bias of the different methods, see [11, Corollary 4.8]. Further, the

bounds (4.37), (4.38), (4.42) and (4.43) remain valid with the constant

(4.47) Δ = min

{ ⟨𝑟, 𝜂∗ − 𝜂⟩
∥𝜂∗ − 𝜂∥1

: 𝜂∗ ∈ vert(𝐹∗), 𝜂 ∈ 𝑁(𝜂∗) \ 𝐹∗
}
> 0,

where vert(𝐹∗) denotes the set of vertices of 𝐹∗.
To see this, we follow the same strategy as in the proofs above and generalize Lemma 4.24

to non unique optimizers. Indeed, for

Δ B min

{
⟨𝑣, 𝑥∗ − 𝑥⟩
∥𝑥∗ − 𝑥∥1

: 𝑥 ∈ 𝑁(𝑥∗) \ 𝐹∗ , 𝑥∗ ∈ vert(𝐹∗)
}
,

where vert(𝐹∗) denotes the vertex set of the face of optimizers we obtain

Δ · min

𝑥∗∈𝐹∗
∥𝑥∗ − 𝑥∥1 ≤ 𝑓 ∗ − ⟨𝑣, 𝑥⟩,

where 𝑓 ∗ denotes the optimal value attained on the face 𝐹∗. To simplify notation let us

define the set 𝐸 B {𝑥 − 𝑥∗ : 𝑥 ∈ 𝑁(𝑥∗) \ 𝐹∗ , 𝑥∗ ∈ vert(𝐹∗)} of edges such that exactly one of

the two endpoints is contained in 𝐹∗. Then, the polytope 𝑃 is contained in the cone

𝐶 =

{
𝑥∗ +

∑
𝑒∈𝐸

𝛼𝑒 𝑒 : 𝑥∗ ∈ 𝐹∗ , 𝛼𝑒 ≥ 0 for all 𝑒 ∈ 𝐸
}
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and hence we can write 𝑥 ∈ 𝑃 as 𝑥 = 𝑥∗ +∑
𝑒 𝛼𝑒 𝑒 for some 𝑥∗ ∈ 𝐹∗. Just like in the proof

of Lemma 4.24 we obtain

Δ∥𝑥∗ − 𝑥∥1 ≤ Δ
∑
𝑒

𝛼𝑒 ∥𝑒∥1 ≤
∑
𝑒

⟨𝑣,−𝑒⟩ = ⟨𝑣, 𝑥∗⟩ − ⟨𝑣, 𝑥⟩ = 𝑓 ∗ − ⟨𝑣, 𝑥⟩.

Taking the minimum over 𝑥∗ yields the claim.

Now we come back to the convergence of the flow 𝜂(𝑡) towards its Bregman projection

𝜂∗ and consider the case 𝜎 = 1. Let �̂�(𝑡) ∈ 𝐹∗ denote the ∥·∥1 projection of 𝜂(𝑡) onto 𝐹∗, i.e.,

be such that

∥𝜂(𝑡) − �̂�(𝑡)∥1 = min

𝜂′∈𝐹∗
∥𝜂′ − 𝜂(𝑡)∥1.

Note that �̂�(𝑡) → 𝜂∗ since 𝜂(𝑡) → 𝜂∗. Using by Lemma 4.25 one can show that for any 𝑐 < 2

and 𝑡 large enough it holds that 𝐷𝐾𝐿(�̂�(𝑡), 𝜂(𝑡)) ≤ 𝑐−1∥�̂�(𝑡) − 𝜂(𝑡)∥1 and now we obtain

𝐷𝐾𝐿(𝜂∗ , 𝜂(𝑡)) ≤ 𝐷𝐾𝐿(�̂�(𝑡), 𝜂(𝑡)) ≤ 𝑐−1

min

𝜂′∈𝐹∗
∥𝜂′ − 𝜂(𝑡)∥1 ≤ 𝑐−1Δ−1(𝑅∗ − ⟨𝑟, 𝜂(𝑡)⟩)

for 𝑡 large enough, which yields the strong convexity condition (4.28) along the trajectory.

For 𝜎 ∈ (1, 2) and Kakade’s natural policy gradient the proof can be adapted analogously.

Numerical examples. We use the following example proposed by Kakade [153] and

which was also used in [28, 206]. Computer code for all experiments is made available in

https://github.com/muellerjohannes/geometry-natural-policy-gradients. We

consider an MDP with two states 𝑠1 , 𝑠2 and two actions 𝑎1 , 𝑎2, with the transitions and

instantaneous rewards shown in Figure 4.2.

𝑠1 𝑠2

𝑎2

𝑎2

𝑟 = +1, 𝑎1 𝑎1 , 𝑟 = +2

Figure 4.2. Transition graph and reward of the MDP example.

We adopt the initial distribution 𝜇(𝑠1) = 0.2, 𝜇(𝑠2) = 0.8 and work with a discount

factor of 𝛾 = 0.9, whereas Kakade studied the mean reward case. Note however that the

experiments can be performed for arbirtrarily large discount factor, where we chose a

smaller factor since the correspondence between the policy polytope and the state-action

polytope is clearer to see in the illustrations. We consider tabular softmax policies and

plot the trajectories of vanilla PG, Kakade’s NPG, and 𝜎-NPG for the values

𝜎 ∈ {0, 0.5, 1, 1.5, 2, 3, 4}

for 30 random (but the same for every method) initializations. We plot the trajectories in

the state-action space (Figure 4.3) and in the policy polytope (Figure 4.4). In order to put

the convergence results from this section into perspective, we plot the evolution of the

optimality gap 𝑅∗−𝑅(𝜃(𝑡)) (Figure 4.5). We use an adaptive step size Δ𝑡𝑘 , which prevents

the blowup of the parameters for 𝜎 < 1, and hence we do not consider the number of

iterations but rather the sum of the step sizes as a measure for the time, 𝑡𝑛 =
∑𝑛
𝑘=1

Δ𝑡𝑘 .

For vanilla PG and 𝜎 ∈ (1, 2) we expect a decay at rate 𝑂(𝑡−1) [200] and 𝑂(𝑡−1/(𝜎−1)) by

Theorem 4.27. Therefore we use a logarithmic (on both scales) plot for vanilla PG and

𝜎 > 1 and also indicate the predicted rate using a dashed gray line. For Kakade’s and
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Vanilla PG Kakade’s NPG 𝜎 = 0 (Euclidean)

𝜎 = 0.5 𝜎 = 1 (Fisher/Morimura) 𝜎 = 1.5

𝜎 = 2 (Itakuro-Saito) 𝜎 = 3 𝜎 = 4

Figure 4.3. State-action trajectories for different PG methods, which are

vanilla PG, Kakade’s NPG and 𝜎-NPG, where Morimura’s NPG corre-

sponds to 𝜎 = 1; the state-action polytope is shown in gray inside a three

dimensional projection of the the simplex Δ𝒮×𝒜 ; shown are trajectories

with the same random 30 initial values for every method; the maximizer

𝜂∗ is located at the upper left corner of the state-action polytope.

Morimuras NPG we expect linear convergence by Theorem 4.26 and 4.27 respectively and

hence use a semi-logarithmic plot.

First, we note that for 𝜎 ∈ {−0.5, 0, 0.5} the trajectories of 𝜎-NPG flow hit the boundary

of the state-action polytope 𝒩 , which is depicted in gray inside the simplex Δ𝒮×𝒜 . This

is consistent with our analysis, since the functions 𝜙𝜎 are Legendre type functions only

for 𝜎 ∈ [1,∞) and hence only in this case the NPG flow is guaranteed to admit long time

solutions. However, we observe finite-time convergence of the trajectories towards the

global optimum (see Figure 4.5), which we suspect to be due to the error of temporal

discretization.

For the other methods, namely vanilla PG, Kakade’s NPG and 𝜎-NPG with 𝜎 ∈ [1,∞),
Theorem 4.22 and Theorem 4.21 show the global convergence of the gradient flow tra-

jectories, which we also observe both in state-action space and in policy space (see Fig-

ures 4.3 and 4.4 respectively). When considering the convergence in objective value we
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Vanilla PG Kakade’s NPG 𝜎 = 0 (Euclidean)

𝜎 = 0.5 𝜎 = 1 (Fisher/Morimura) 𝜎 = 1.5

𝜎 = 2 (Itakuro-Saito) 𝜎 = 3 𝜎 = 4
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Figure 4.4. Plots of the trajectories of the individual methods inside the

policy polytope Δ𝒮𝒜 � [0, 1]
2
; additionally, a heatmap of the reward func-

tion 𝜋 ↦→ 𝑅(𝜋) is shown; the maximizer 𝜋∗ is located at the upper left

corner of the policy polytope.

observe that both Kakade’s and Morimura’s NPG exhibit a linear rate of convergence as

asserted by Theorem 4.26 and Theorem 4.27, whereby Kakade’s NPG appears to have

more severe plateaus in some examples. Further, we compute the constant Δ given

in (4.39). To do this, we note that the optimal policy 𝜋∗Δ𝒮𝒜 is the deterministic policy

given by 𝜋∗(𝑎2 |𝑠1) = 𝜋∗(𝑎1 |𝑠2) = 1. The two neighboring policies of 𝜋∗ are the two policies

𝜋1 ,𝜋2 ∈ Δ𝒮𝒜 that agree with 𝜋∗ on one of the two states and the two neighboring vertices
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Vanilla PG Kakade’s NPG 𝜎 = 0 (Euclidean)

𝜎 = 0.5 𝜎 = 1 (Fisher/Morimura) 𝜎 = 1.5

𝜎 = 2 (Itakuro-Saito) 𝜎 = 3 𝜎 = 4
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Figure 4.5. Plot of the optimality gaps 𝑅∗ − 𝑅(𝜃(𝑡)) during optimization;

note that for vanilla PG and 𝜎 > 1 these are log-log plots since we expect a

decay like 𝑡−1
and 𝑡−1/(𝜎−1)

respectively, which are shown as a dashed gray

line; Kakade’s and Morimura’s NPG are at a log plot since we expect a

linear convergence of (almost) 𝑂(𝑒−2Δ𝑡); finally, for 𝜎 < 1 we observe finite

time convergence.

of 𝜂∗ are the corresponding state-action frequencies 𝜂𝜋1
and 𝜂𝜋2

and hence

Δ = min

(
𝑅∗ − 𝑅(𝜋1)
∥𝜂∗ − 𝜂𝜋1 ∥1

,
𝑅∗ − 𝑅(𝜋2)
∥𝜂∗ − 𝜂𝜋2 ∥1

)
= 0.4

in our example. Since Theorem 4.26 and Theorem 4.27 guarantee the exponential con-

vergence 𝑂(𝑒−𝑐𝑡) of Kakade’s and Morimura’s NPG flow for 𝑐 ∈ (0, 2Δ) we show the

guaranteed decay 𝑂(𝑒−2Δ𝑡) = 𝑂(𝑒−0.8𝑡) in Figure 4.5 and observe that it matches the ob-

served convergence. Kakade’s natural policy gradient with constant step size 𝛿 > 0 was

shown to converge linearly at speed 𝑂(𝑒−𝜅𝛿𝑘), where 𝜅 depends on the minimal subop-

timality of individual actions [156]. More precisely, in the case of a unique optimizer

corresponding to a deterministic policy selecting 𝑎∗𝑠 in state 𝑠 we have

𝜅 = (1 − 𝛾)−1

min

𝑠
min

𝑎≠𝑎∗𝑠
𝑉∗(𝑠) −𝑄∗(𝑠, 𝑎),
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which evaluates to 0.8 in our specific example. It is unclear, whether the two rates agree

in general as our method always guarantees the same rates for Kakade’s and Morimura’s

natural policy gradient.

For vanilla PG and 𝜎 > 1 we observe a sublinear convergence rate of 𝑂(𝑡−1) and

𝑂(𝑡−1/(𝜎−1)) respectively, which are shown via dashed gray lines in each case. This

confirms the convergence rate 𝑂(𝑡−1) for vanilla PG [200] and indicates that the rate

𝑂(𝑡−1/(𝜎−1)) shown for 𝜎 ∈ (1, 2) is also valid in the regime 𝜎 ≥ 2. Finally, we observe that

larger 𝜎 appears to lead to more severe plateaus, which is apparent in the convergence in

objective and also from the evolution in policy space and in state-action space.

4.3.3. Linear convergence of regularized Hessian NPG flows. It is known both em-

pirically and theoretically that strictly convex regularization in state-action space yields

linear convergence in reward optimization for vanilla and Kakade’s natural policy gradi-

ents [200, 71]. Using Lemma 4.23 we generalize the result for Kakade’s NPG and provide

a result giving the linear convergence for general Hessian NPG.

Theorem 4.30 (Linear convergence for regularized problems). Consider Setting 4.14 and let
𝜙 be a Legendre type function and by ℜ𝜆(𝜂) = ⟨𝑟, 𝜂⟩ − 𝜆𝜙(𝜂) denote the regularized reward for
some 𝜆 > 0 and fix an 𝜂0 ∈ int(𝒩) and assume that the global maximizer 𝜂∗𝜆 of ℜ𝜆 over𝒩 lies in
the interior int(𝒩). Denote the global solution of the Hessian gradient flow (4.18) with respect to
the regularized reward ℜ𝜆 and the Hessian geometry induced by 𝜙 by 𝜂 : [0,∞) → 𝒩 . For any
𝑐1 ∈ (0,𝜆) there exists a constant 𝑐2 = 𝑐2(𝜂0 , 𝑐1) > 0 such that

(4.48) 𝐷𝜙(𝜂∗𝜆 , 𝜂(𝑡)) ≤ 𝑐2𝑒
−𝑐1𝑡 for all 𝑡 ≥ 0.

In particular, for any 𝜅 ∈ (𝜅𝑐 ,∞) this implies

(4.49) 𝑅∗𝜆 −ℜ𝜆(𝜂(𝑡)) ≤ 𝜅𝜆𝑐2𝑒
−𝑐1𝑡 ,

for 𝑡 large enough, where 𝜅𝑐 denotes the condition number of ∇2𝜙(𝜂∗𝜆).
Proof. We first recall that by Lemma 4.15 it holds thatℜ(𝜂(𝑡)) → ℜ(𝜂∗𝜆) and the uniqueness

of the maximizer implies 𝜂(𝑡) → 𝜂∗𝜆 ∈ int(𝒩). Note that

𝐷𝜙(𝜂∗𝜆 , 𝜂) = 𝜆−1𝐷𝜆𝜙(𝜂∗𝜆 , 𝜂) = 𝜆−1𝐷−ℜ𝜆(𝜂∗𝜆 , 𝜂).
By Lemma 4.31 for 𝜔 ∈ (0, 1) there is a neighborhood 𝑁𝜔 of 𝜂∗ such that

(4.50) ℜ𝜆(𝜂∗𝜆) −ℜ𝜆(𝜂) ≥ 𝜔𝐷−ℜ𝜆(𝜂∗𝜆 , 𝜂) = 𝜆𝜔𝐷𝜙(𝜂∗𝜆 , 𝜂),
for𝜂(𝑡) ∈ 𝑁𝜔 and hence for 𝑡 large enough. Now Lemma 4.23 shows the linear convergence

𝐷𝜙(𝜂∗𝜆 , 𝜂(𝑡)) ≤ 𝑐2(𝜂0 , 𝑐1)𝑒−𝑐1𝑡

of the trajectory in the Bregman divergence. For 𝑚, 𝑀 > 0 such that 𝑚𝐼 ≺ ∇2𝜙(𝜂∗𝜆) ≺ 𝑀𝐼

we can estimate

𝑅∗𝜆 −ℜ𝜆(𝜂(𝑡)) = ℜ𝜆(𝜂∗𝜆) −ℜ𝜆(𝜂(𝑡)) ≤
𝜆𝑀

2

· ∥𝜂∗𝜆 − 𝜂(𝑡)∥
2 ≤ 𝜆𝑀

𝑚
· 𝐷𝜙(𝜂∗𝜆 , 𝜂)

for 𝜂(𝑡) close to 𝜂∗𝜆, where we used that 𝜙 is𝑚 strongly convex in a neighborhood of 𝜂∗𝜆. □

In the proof of the previous theorem we used the following lemma.

Lemma 4.31. Let 𝜙 be a strictly convex function defined on an open convex set Ω ⊆ R𝑑 with
unique minimizer 𝑥∗. Then for any 𝜔 ∈ (0, 1) there is a neighborhood 𝑁𝜔 of 𝑥∗ such that

(4.51) 𝜙(𝑥) − 𝜙(𝑥∗) ≥ 𝜔𝐷𝜙(𝑥∗ , 𝑥) for all 𝑥 ∈ 𝑁𝜔 .
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Proof. Set 𝑓 (𝑥) B 𝐷𝜙(𝑥∗ , 𝑥) and 𝑔(𝑥) B 𝐷𝜙(𝑥, 𝑥∗). It holds that 𝑓 (𝑥∗) = 𝑔(𝑥∗) = 0 and

since both functions are non-negative ∇ 𝑓 (𝑥∗) = ∇𝑔(𝑥∗) = 0. Further, since ∇𝜙(𝑥∗) = 0

we have 𝑔(𝑥) = 𝜙(𝑥) − 𝜙(𝑥∗). By (4.5) we have ∇2 𝑓 (𝑥∗) = ∇2𝑔(𝑥∗) = ∇2𝜙(𝑥∗) and Taylor

extension yields

𝑓 (𝑥) = (𝑥 − 𝑥∗)⊤∇2𝜙(𝑥∗)(𝑥 − 𝑥∗) + 𝑜(∥𝑥 − 𝑥∗∥2)
= 𝑔(𝑥) + 𝑜(∥𝑥 − 𝑥∗∥2)
= 𝜙(𝑥) − 𝜙(𝑥∗) + 𝑜(∥𝑥 − 𝑥∗∥2).

Hence, for any 𝜀 > 0 there is 𝛿 > 0 such that for 𝑥 ∈ 𝐵𝛿(𝑥∗) it holds that

𝑓 (𝑥) ≤ 𝜙(𝑥) − 𝜙(𝑥∗) + 𝜀∥𝑥 − 𝑥∗∥2 ≤
(
1 + 2𝜀

𝑚

)
(𝜙(𝑥) − 𝜙(𝑥∗))

for any 𝑚 ∈ (0,𝜆min(∇2𝜙(𝑥∗)) in a possible smaller neighborhood as 𝜙 is 𝑚-strongly

convex in a neighborhood around 𝑥∗. Setting 𝜀 B 𝑚(𝜔−1 − 1)/2 yields the claim. □

Remark 4.32 (Location of maximizers). The condition that 𝜂∗𝜆 ∈ int(𝒩) assumed in The-

orem 4.30 is satisfied if the gradient blow-up condition from Definition 4.16 is slightly

strengthened. Indeed, suppose that for any 𝜂 ∈ 𝜕𝒩 there is a direction 𝑣 such that

𝜂 + 𝑡𝑣 ∈ int(𝒩) for small 𝑡 and such that 𝜕𝑣𝜙(𝜂 + 𝑡𝑣) = 𝑣⊤∇𝜙(𝜂 + 𝑡𝑣) → −∞ for

𝑡 → 0. If 𝜙(𝜂) = ∞, surely 𝜂 ≠ 𝜂∗. To argue in the case that 𝜙(𝜂) < +∞, we note

that 𝜕𝑣ℜ𝜆(𝜂 + 𝑡𝑣) → +∞ and choose 𝑡0 > 0 such that 𝜕𝑣ℜ𝜆(𝜂 + 𝑡0𝑣) > 0. Then by the

concavity of ℜ𝜆 and continuity of ℜ𝜆 we have

ℜ𝜆(𝜂) ≤ ℜ𝜆(𝜂 + 𝑡0𝑣) − 𝑡0𝜕𝑣ℜ𝜆(𝜂 + 𝑡0𝑣) < ℜ𝜆(𝜂 + 𝑡0𝑣),

and hence 𝜂 ≠ 𝜂∗𝜆.

Now we elaborate the consequences of this general convergence result given in Theo-

rem 4.30 for Kakade and 𝜎-NPG flows.

Corollary 4.33 (Linear convergence of regularized Kakade’s NPG flow). Consider Set-
ting 4.14, where 𝜙 = 𝜙𝐶 is the conditional entropy defined in (4.9) and consider the regularized
reward ℜ𝜆 = ⟨𝑟, 𝜂⟩ −𝜆𝜙𝐶(𝜂) for some 𝜆 > 0 and denote the maximizer of ℜ by 𝜂∗𝜆 and denote the
global solution of the Hessian gradient flow (4.18) by 𝜂 : [0,∞) → 𝒩 . For any 𝑐1 ∈ (0,𝜆) there
exists a constant 𝑐2 = 𝑐2(𝜂0 , 𝑐1) > 0 such that

(4.52) 𝐷𝜙(𝜂∗𝜆 , 𝜂(𝑡)) ≤ 𝑐2𝑒
−𝑐1𝑡 for all 𝑡 ≥ 0.

In particular, for any 𝜅 ∈ (𝜅𝑐 ,∞) this implies

(4.53) 𝑅∗𝜆 −ℜ𝜆(𝜂(𝑡)) ≤ 𝜅𝜆𝑐2𝑒
−𝑐1𝑡

for 𝑡 large enough, where 𝜅𝑐 denotes the condition number of ∇2𝜙𝐶(𝜂∗𝜆).
Proof. We want to use Remark 4.32. Recall that

𝜙𝐶(𝜂) = 𝐻(𝜂) − 𝐻(𝜌) =
∑
𝑠,𝑎

𝜂(𝑠, 𝑎) log(𝜂(𝑠, 𝑎)) −
∑
𝑠

𝜌(𝑠) log(𝜌(𝑠)),

where 𝜌(𝑠) = ∑
𝑎 𝜂(𝑠, 𝑎) is the state marginal. Note that by Assumption 3.3 it holds that

𝜌(𝑠) > 0. Let us consider a point on the boundary 𝜂 ∈ 𝜕𝒩 then surely 𝜂(𝑠, 𝑎) = 0 for

some 𝑠 ∈ 𝒮 , 𝑎 ∈ 𝒜 since 𝜂 ≥ 0 are the only inequalities of the state-action polytope, see
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Theorem 3.5. Fix now any 𝑣 ∈ R𝒮×𝒜 such that 𝜂𝜀 B 𝜂 + 𝜀𝑣 ∈ int(𝒩) for small 𝜀 > 0.

Writing 𝜌𝜀 for the associated state marginal, we obtain

𝜕𝑣𝜙𝐶(𝜂𝜀) =
∑
𝑠,𝑎

log(𝜂𝜀(𝑠, 𝑎)) + |𝒮|(|𝒜| − 1) −
∑
𝑠

log(𝜌𝜀(𝑠)) → −∞

for 𝜀→ 0. □

Corollary 4.34 (Linear convergence for regularized 𝜎-NPG flow). Consider Setting 4.14 with
𝜙 = 𝜙𝜎 for some 𝜎 ∈ [1,∞) and let ℜ𝜆(𝜂) = ⟨𝑟, 𝜂⟩ − 𝜆𝜙(𝜂) denote the regularized reward and
denote the maximizer of ℜ𝜆 by 𝜂∗𝜆 and fix an element 𝜂0 ∈ int(𝒩). Denote the global solution of the
Hessian gradient flow (4.18) with respect to the regularized reward ℜ𝜆 and the Hessian geometry
induced by 𝜙 by 𝜂 : [0,∞) → 𝒩 . For any 𝑐1 ∈ (0,𝜆) there exists a constant 𝑐2 = 𝑐2(𝜂0 , 𝑐1) > 0

such that

(4.54) 𝐷𝜙(𝜂∗𝜆 , 𝜂(𝑡)) ≤ 𝑐12𝑒−𝑐1𝑡 for all 𝑡 ≥ 0.

In particular, for any 𝜅 ∈ (𝜅(𝜂∗𝜆),∞) this implies

(4.55) 𝑅∗𝜆 −ℜ𝜆(𝜂(𝑡)) ≤ 𝜅𝜎𝜆𝑐2𝑒
−𝑐1𝑡

for 𝑡 large enough, where 𝜅(𝜂∗𝜆) =
max𝜂∗𝜆
min𝜂∗𝜆

.

Proof. Again, we use Remark 4.32 to see that for the Legendre type functions 𝜙𝜎 the unique

maximizer 𝜂∗𝜆 of ℜ𝜆 lies in the interior of 𝒩 . Hence, it remains to compute the condition

number, for which we note that ∇2𝜙𝜎(𝜂∗𝜆) = diag(𝜂∗𝜆)−𝜎, which yields the result. □

Remark 4.35 (Regularization error). Regularizing an optimization problem changes the

optimization problem and usually also the optimizer. The introduced error can be esti-

mated in terms of the regularization strength 𝜆. For logarithmic barriers in state-action

space this can be done using standard techniques for interior point methods [58, 2]. For

entropic regularization in state-action space, the regularization error is studied in [294],

and for the conditional entropy this is done in [200, 71].

The results above do not cover arbitrary combinations of Hessian geometries and

regularizers. However, the proof of Theorem 4.30 can be adapted to this case, where the

only part that requires adjustments is (4.50) that couples the regularized reward to the

Bregman divergence. In principle, this can be extended to the case of regularizers that

are different from the function inducing the Hessian geometry.

Numerical examples: The 𝜆 → 0 regime. Theorem 4.30 and its corollaries yield a

linear convergence rate of order 𝑂(𝑒−𝜆𝑡), where the bound deteriorates when the regular-

ization strength 𝜆 is sent to zero, 𝜆→ 0. The bound 𝑅∗𝜆 − 𝑅𝑘 = 𝑂((1 − 𝜆Δ𝑡)𝑘) for entropy

regularized NPG descent [71] exhibits a similar degradation for 𝜆 → 0. It is natural to

expect that the convergence behavior for 𝜆→ 0 is similar to the convergence behavior for

𝜆 = 0, i.e., the unregularized case. Recall that Theorem 4.26 and Theorem 4.27 establish

linear rates without regularization for Kakade’s and Morimura’s NPG and a sublinear

rate 𝑂(𝑡−1/(𝜎−1)) for 𝜎 ∈ (1, 2).
To evaluate the convergence behavior for 𝜆→ 0 for a specific NPG method we apply it

to a collection of small regularization strengths with 10 different random initializations.

Here, we revisit Kakade’s example that was already used in Subsection 4.3.2 for unreg-

ularized problems. For every individual run we estimate the exponent 𝑐 in the linear
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convergence rate 𝑅∗ − 𝑅(𝜃(𝑡)) = 𝑂(𝑒−𝑐𝑡) via linear regression after a logarithmic trans-

formation. Here, we take the iterates where the optimality gap 𝑅∗ − 𝑅(𝜃) lies between

10
−10

and 10
−5

. In Figure 4.6 we present the mean of the estimated convergence rates for

Kakade’s and Morimura’s NPG as well as for 𝜎 NPG for 𝜎 = 1.5.
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Figure 4.6. Shown are the estimated exponents 𝑐 > 0 when fitting an ex-

ponential decay 𝑂(𝑒−𝑐𝑡) to the suboptimality gap 𝑅∗ − 𝑅(𝜃(𝑡)) for different

NPG methods – Kakade, Morimura and 𝜎 = 1.5 – and for different regu-

larization strengths 𝜆.

For both Kakade’s and Morimura’s NPG method we find that the estimated exponents

do not decrease towards zero but rather improve, seamingly linearly in 𝜆, towards the

estimated exponents of the corresponding unregularized cases. This indicates that the

guarantees in Corollary 4.33 and Corollary 4.34 for these NPG methods are not tight. In

contrast for the 𝜎-NPG with 𝜎 = 1.5 we observe that the convergence rates deteriorate for

𝜆→ 0, which conforms with the sublinear convergence𝑂(𝑡−2) of the unregularized prob-

lem. However, the exponent seems to decrease slower than linearly in the regularization

strength 𝜆 like it is the case in our guarantee. Theorem 4.30 shows linear convergence

based on the strong convexity of the regularizer. The convergence rate of the unreg-

ularized NPG methods however is determined by the behavior of the convex function

inducing the Hessian geometry at the boundary rather than the convexity of the loss. We

believe that a theoretical analysis combining these two effects could improve the linear

rate in Theorem 4.30 for small regularization strength.

4.4 Locally quadratic convergence for regularized problems

It is known that Kakade’s NPG method and more generally quasi-Newton policy gradient

methods with suitable regularization and step sizes converge at a locally quadratic rate [71,

172]. Whereas these results regard the NPG method as an inexact Newton method in the

parameter space, we regard it as an inexact Newton method in state-action space, which
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allows us to directly leverage results from the optimization literature and therefore leading

to relatively short proofs. Our result extends the locally quadratic convergence rate to

general Hessian-NPG methods, which include in particular Kakade’s and Morimura’s

NPG. Note that the result holds when the step size is equal to the inverse penalization

strength, which is reminiscent of Newton’s method converging for step size 1.

Theorem 4.36 (Locally quadratic convergence of regularized NPG methods). Consider a
real-valued function 𝜙 : R𝒮×𝒜 → R∪{+∞}, which we assume to be finite and twice continuously
differentiable on R𝒮×𝒜>0

and such that ∇2𝜙(𝜂) is positive definite when restricted to 𝑇𝜂𝒩 = 𝑇ℒ ⊆
R𝒮×𝒜 for every 𝜂 ∈ int(𝒩). Further, consider a regular policy parametrization and the regularized
reward 𝑅𝜆(𝜃) B 𝑅(𝜃) − 𝜆𝜙(𝜂𝜃) and assume that 𝜂∗ ∈ int(𝒩), i.e., the maximizer lies in the
interior of the state-action polytope. Consider the NPG induced by the Hessian geometry of 𝜙 with
step size Δ𝑡 = 𝜆−1, i.e.,

𝜃𝑘+1 = 𝜃𝑘 + Δ𝑡 · 𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘),

where 𝐺(𝜃𝑘)+ denotes the Moore-Penrose inverse. Assume that 𝜃𝑘 → 𝜃∗ for some maximizer 𝜃∗,
then 𝜃𝑘 → 𝜃∗ at a (locally) quadratic rate, i.e., it holds that

(4.56) ∥𝜃𝑘 − 𝜃∗∥ = 𝑂(𝑒−𝑘2) for 𝑘 →∞

and hence 𝑅𝜆(𝜃𝑘) → 𝑅∗𝜆 at a (locally) quadratic rate.

The proof of relies on the following convergence result for inexact Newton methods.

Theorem 4.37 (Theorem 3.3 in [90]). Consider an objective function 𝑓 ∈ 𝐶2(R𝑑)with ∇2 𝑓 (𝑥) ∈
S
𝑠𝑦𝑚

>0
for any 𝑥 ∈ R𝑑 and assume that 𝑓 admits a minimizer 𝑥∗. Let (𝑥𝑘) be inexact Newton iterates

given by

𝑥𝑘+1 = 𝑥𝑘 − ∇2 𝑓 (𝑥𝑘)−1∇ 𝑓 (𝑥𝑘) + 𝜀𝑘 ,

and assume that they converge towards the minimum 𝑥∗. If ∥𝜀𝑘 ∥ = 𝑂(∥∇ 𝑓 (𝑥𝑘)∥𝜔), then 𝑥𝑘 → 𝑥∗

at rate 𝜔, i.e., ∥𝑥𝑘 − 𝑥∗∥ = 𝑂(𝑒−𝑘𝜔 ).
We take this approach and show that the iterates of the regularized NPG method can

be interpreted as an inexact Newton method in state-action space. For this, we first make

the form of the Newton updates in state-action space explicit.

Lemma 4.38 (Newton iteration in state-action space). The iterates of Newton’s method in
state-action space are given by

(4.57) 𝜂𝑘+1 = 𝜂𝑘 + 𝜆−1Π𝐸
𝑇ℒ(∇

2𝜙(𝜂𝑘))−1Π𝐸
𝑇ℒ(∇ℜ𝜆(𝜂𝑘)),

where ℜ𝜆(𝜂) = ⟨𝑟, 𝜂⟩ + 𝜆𝜙(𝜂) is the regularized reward and Π𝐸
𝑇ℒ the Euclidean projection onto

the tangent space of the affine space ℒ defined in (3.5).

Proof. The domain of the optimization problem is R𝒮×𝒜≥0
∩ ℒ an hence, we perform New-

ton’s method on the affine subspace 𝐿. Writing 𝐿 = 𝜂0 + 𝑋 for a linear subspace 𝑋 we

can equivalently perform Newton’s method on 𝑋 since the method is affine invariant. We

denote the canonical embedding 𝜄 : 𝑋 ↩→ ℒ , 𝑥 ↦→ 𝑥 + 𝜂0 and set 𝑓 (𝑥) B ℜ𝜆(𝜄𝑥). Then, we

obtain the Newton iterates 𝑥𝑘 and 𝜂𝑘 = 𝜄𝑥𝑘 by

𝑥𝑘+1 = 𝑥𝑘 + ∇2 𝑓 (𝑥𝑘)−1∇ 𝑓 (𝑥𝑘).
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Straight up computation yields ∇ 𝑓 (𝑥) = 𝜄⊤∇ℜ𝜆(𝜄𝑥) and ∇2 𝑓 (𝑥) = 𝜄⊤∇2ℜ𝜆(𝜄𝑥)𝜄. Hence,

we obtain

𝜂𝑘+1 − 𝜂𝑘 = 𝜄(𝜂𝑘+1 − 𝜂𝑘) = 𝜄∇2 𝑓 (𝑥𝑘)−1∇ 𝑓 (𝑥𝑘) = 𝜄𝜄+∇2ℜ𝜆(𝜂𝑘)−1(𝜄⊤)+𝜄⊤∇ℜ𝜆(𝜂𝑘)
= Π𝐸

𝑇ℒ(∇
2ℜ𝜆(𝜂𝑘))−1Π𝐸

𝑇ℒ(∇ℜ𝜆(𝜂𝑘)),
where we used 𝐴𝐴+ = Π

range(𝐴) and (𝐴⊤)+𝐴⊤ = Π
ker(𝐴⊤) = Π

range(𝐴). □

Lemma 4.39. Let (𝜃𝑘)𝑘∈N denote the iterates of a Hessian NPG induced by a stricly convex
function 𝜙 and with step size Δ𝑡, i.e,

𝜃𝑘+1 = 𝜃𝑘 + Δ𝑡 · 𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘),
where the Gram matrix is given by𝐺(𝜃) = 𝐷𝑃(𝜃)⊤∇2𝜙(𝜂𝜃)𝐷𝑃(𝜃). Then the state-action iterates
satisfy

(4.58) 𝜂𝜃𝑘+1
= 𝜂𝜃𝑘 + Δ𝑡 ·Π𝐸

𝑇ℒ(∇
2𝜙(𝜂𝑘)−1Π𝐸

𝑇ℒ(∇ℜ𝜆(𝜂𝑘))) + 𝑂(Δ𝑡2∥𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘)∥2)
for ∥𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘)∥ → 0.
Proof. Writing 𝑃 for the mapping 𝜃 ↦→ 𝜂𝜃 and an application of Taylor’s theorem implies

that

𝜂𝜃𝑘+1
− 𝜂𝜃𝑘 = Δ𝑡 · 𝐷𝑃(𝜃𝑘)𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘) + 𝑂(Δ𝑡2∥𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘)∥2).

The first term is equal to

Δ𝑡 · 𝐷𝑃(𝜃𝑘)𝐷𝑃(𝜃)+∇2𝜙(𝜂𝑘)−1(𝐷𝑃(𝜃𝑘)⊤)+∇𝐷𝑃(𝜃𝑘)⊤∇ℜ𝜆(𝜂𝑘),
which again is equal to

Δ𝑡 ·Π𝐸
𝑇ℒ(∇

2𝜙(𝜂𝑘)−1Π𝐸
𝑇ℒ(∇ℜ𝜆(𝜂𝑘)))

since 𝐷𝑃(𝜃𝑘)𝐷𝑃(𝜃𝑘)+ = (𝐷𝑃(𝜃𝑘)⊤)+𝐷𝑃(𝜃𝑘)⊤ = Π
range(𝐷𝑃(𝜃𝑘 )) like before and

range(𝐷𝑃(𝜃𝑘)) = 𝑇ℒ.
□

Proof of Theorem 4.36. We want to apply Theorem 4.37 to the sequence (𝜂𝜃𝑘 )𝑘∈N where

𝑓 = ℜ𝜆 and

𝜀𝑘 = 𝑂(∥𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘)∥2) for ∥𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘)∥ → 0

by Lemma 4.38 and Lemma 4.39. Surely, since 𝜃𝑘 → 𝜃∗ it holds that 𝜂𝜃𝑘 → 𝜂∗ for 𝑘 →∞.

Further, 𝜃𝑘 → 𝜃∗ implies

𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘) = (Δ𝑡)−1(𝜃𝑘+1 − 𝜃𝑘) → 0 for 𝑘 →∞.
Since 𝜃 ↦→ 𝜋𝜃 is a regular policy parametrization the rank of 𝐺(𝜃) does not depend on 𝜃
and is equal to dim(𝒩) = dim(Δ𝒮𝒜) = 𝑛𝒮(𝑛𝒜 − 1). This implies that 𝐺(𝜃𝑘)+ → 𝐺(𝜃∗)+ and

hence 𝐺(𝜃𝑘)+ remains bounded for 𝑘 →∞, see [238]. Now we can estimate

∥𝜀𝑘 ∥ = 𝑂(Δ𝑡2∥𝐺(𝜃𝑘)+∇𝑅𝜆(𝜃𝑘)∥2)
= 𝑂(Δ𝑡2∥∇𝑅𝜆(𝜃𝑘)∥2)
= 𝑂(Δ𝑡2∥𝐷𝑃(𝜃𝑘)⊤∇ℜ𝜆(𝜂𝑘)∥2)
= 𝑂(∥∇ℜ𝜆(𝜂𝑘)∥2),

130



where we used that 𝐷𝑃(𝜃𝑘) stays bounded as 𝐷𝑃(𝜃𝑘) → 𝐷𝑃(𝜃∗). Now, Theorem 4.37

proves the claim. □

Remark 4.40. A benefit of regarding the iteration as an inexact Newton method in state-

action space is that the problem is strongly convex in state-action space. In contrast, in

policy space the problem is non-convex, which makes the analysis in that space more

delicate. Further, the corresponding Riemannian metric might not be the Hessian metric

of the regularizer in policy space (see also Remark 4.9). In the parameter 𝜃, the NPG

algorithm can be perceived as a generalized Gauss-Newton method; however, the reward

function is non-convex in parameter space. Further, for overparametrized policy models,

i.e., when dim(Θ) > dim(Δ𝒮𝒜) = |𝒮|(|𝒜| − 1) the Hessian ∇2𝑅(𝜃∗) can not be positive

definite, which makes the analysis in parameter space less immediate. Note that the

tabular softmax policies in (4.7) are overparametrized since in this case dim(Θ) = |𝒮||𝒜|.
Remark 4.41 (Behavior for Δ𝑡 < 𝜆−1

). For Newton’s method the locally quadratic conver-

gence only holds at exactly the step size Δ𝑡 = 𝜆−1
. Consider for example 𝑓 (𝑥) = 𝑥2/2,

where Newton’s method with step sizeΔ𝑡 ∈ [0, 1]will produce the iterates 𝑥𝑘 = (1−Δ𝑡)𝑘𝑥0.

If Δ𝑡 ≠ 1, this will only converge linearly at a rate of 1−Δ𝑡 that decreases to 0 for Δ𝑡 → 1.

Hence, we expect that also for regularized NPG methods the locally quadratic conver-

gence is only achieved for the exact Newton step size Δ𝑡 = 𝜆−1
and linear convergence for

Δ𝑡 < 𝜆−1
with a rate decreasing towards 0 for Δ𝑡 → 𝜆−1

.

4.5 Discussion and outlook

We study a general class of natural policy gradient methods arising from Hessian geome-

tries in state-action space. This covers, in particular, the notions of NPG due to Kakade

and Morimura and co-authors, which are induced by the conditional entropy and entropy

respectively. Leveraging results on gradient flows in Hessian geometries we obtain global

convergence guarantees of NPG flows for tabular softmax policies and show that both

Kakade’s and Morimura’s NPG converge linearly, and obtain sublinear convergence rates

for NPG associated with 𝛽-divergences. We provide experimental evidence of the tight-

ness of these rates. Finally, we perceive the NPG with respect to the Hessian geometry

induced by the regularizer, with step size equal to the inverse regularization strength, as

an inexact Newton method in state-action space, which allows for a very compact argu-

ment of the locally quadratic convergence of this method. An overview of the established

results in relation to existing works is presented in Table 4.1.

The following questions arose during our analysis and can provide directions for future

research:

• Improved bounds for Kakade’s NPG: Our analysis guarantees the same speed of

convergence for Kakade’s and Morimura’s natural policy gradient flows. This is

because in the proof of Theorem 4.26 we rely on the estimate

𝑐1𝐷𝜙𝐶 (𝜂∗ , 𝜂) ≤ 𝑐1𝐷𝐾𝐿(𝜂∗ , 𝜂) ≤ 𝑅∗ − ⟨𝑟, 𝜂⟩,

which might not be tight. An estimate of the form 𝑐𝐷𝜙𝐶 (𝜂∗ , 𝜂) ≤ 𝑅∗ − ⟨𝑟, 𝜂⟩ for

a constant 𝑐 > 𝑐1 would sharpen our convergence guarantee.
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Unregularized Regularized

Discr. time Cts. time Discr. time Cts. time

Vanilla

𝑂(𝑡−1) [200]

linear for normalized

gradients [199]

– linear –

Kakade linear [156, 305] linear linear [71, 165, 315]

loc. quadratic [71]

linear

Morimura – linear loc. quadratic linear

𝜎 > 1 – O(t−
1

𝝈−1 ) loc. quadratic linear

Table 4.1. Bold results are established in this work; for known results the

initial works are referenced; results showing locally quadratic convergence

use Δ𝑡 = 𝜆−1
.

• Improved bounds for regularized problems: Our linear convergence guarantees

for regularized problems degrade when the regularization strength decreases

where our experiments indicate that the actual convergence does not. This gap

could be filled with an improved theoretical analysis.

• Plateau-free NPG methods: Our experiments indicate that various NPG methods

suffer from plateaus, which are induced by the Riemannian geometry on the

state-action polytope. The design of methods that reduce the influence of these

plateaus could have great a great impact in the field of reinforcement learning

where policy gradient methods are currently under most popular approaches.

• Estimation: Where we have studied convergence behavior under the assumption

of exact gradient evaluations it would be interesting to characterize the number

of samples required to estimate the respective notions of natural policy gradients.

• Partially observable problems: Policy gradient methods are known to not converge

globally in partially observable problems, however, a better understanding of

their convergence properties remains elusive.
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Part II

Neural network based PDE solvers



CHAPTER 5

Theoretical analysis of the boundary penalty method for neural
network based PDE solvers

Following the works of [109, 129, 269, 110, 237, 176] neural network based PDE solvers

have recently experienced an enormous growth in popularity and attention within the

scientific community, overviews over existing methods and advances can be found in the

articles [43, 57, 295, 78]. We focus on methods, which parametrize the solution of the PDE

by a neural network and use a formulation of the PDE in terms of a minimization problem

to construct a loss function used to train the network. Two prominent approaches here are

the so called deep Ritz method and physics informed neural networks (PINNs), which are

often easy to implement compared to finite element methods and promise great success

for high dimensional and parametric problems. Despite this both the deep Ritz method

as well as physics informed networks often fail to produce highly accurate solutions [110,

264, 292, 293, 161, 84, 314]. And hence an improvement of the optimization pipeline is

required to make these methods applicable at an industrial scale. This leads the recent

survey [78] to the conclusion that there are

numerous questions for future [theoretical] PINN research, the most impor-
tant of which is whether or not PINN converges to the correct solution of a
differential equation,

which we also believe to be important for other neural network based approaches that fail

to exhibit the desired convergence behavior.

We focus on the aspect of boundary values in those approaches, which pose a greater

challenge compared to finite element methods as exact Dirichlet boundary values are

often intractable to enforce in a neural network directly. Here we give a short description

required for the description of the contributions of this section and refer to [43, 295, 78]

for in-depth reviews of these methods. For expository reasons we consider the specific

case of the Poisson equation with Dirichlet boundary values

−Δ𝑢 = 𝑓 in Ω ⊆ R𝑑

𝑢 = 0 on 𝜕Ω,
(PE)

where 𝑓 ∈ 𝐿2(Ω) is a square integrable function.

The deep Ritz method. It is well known that a weakly differentiable function 𝑢 ∈
𝐻1

0
(Ω) is a (weak) solution of (PE) if and only if it minimizes the so-called variational

energy

(5.1) minimize

1

2

∫
Ω

|∇𝑢 |2d𝑥 −
∫
Ω

𝑓 𝑢d𝑥 subject to 𝑢 ∈ 𝐻1

0
(Ω).
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In the year of his early death, Walter Ritz proposed to a general method for the approximate

solution of variational problems [242]. Ritz proposed to work with a parametric class of

functions ℱ = {𝑢𝜃 : 𝜃 ∈ R𝑝} ⊆ 𝐻1

0
(Ω) and to minimize

(5.2) 𝜃 ↦→ 1

2

∫
Ω

|∇𝑢𝜃 |2d𝑥 −
∫
Ω

𝑓 𝑢𝜃d𝑥

in order to get an approximate solution of the original problem. Ritz used this approach

to determine the coefficients of polynomials by hand1 and later this method found great

success in the context of finite element methods [61]. More recently, it was suggested

to use function classes parametrized by deep neural networks [110] and this approach is

commonly referred to as the deep Ritz method. It can directly be used if the functions 𝑢𝜃
computed by neural networks have zero boundary values.

Physics informed neural networks (PINNs). A different ansatz from the variational

formulation of the Poisson equation (PE) is to use the solution of (PE) is the unique

solution of the problem

(5.3) minimize

∫
Ω

|Δ𝑢 + 𝑓 |2d𝑥 subject to 𝑢 ∈ 𝐻1

0
(Ω) ∩ 𝐻2(Ω)

since it is the only element attaining value 0. Note that the function space objective is

the squared 𝐿2
norm ∥Δ𝑢 + 𝑓 ∥2

𝐿2(Ω) of the residual −Δ𝑢 − 𝑓 . In similar fashion to the

deep Ritz method, one can use the following objective function for the optimization of

the parameters of a neural network

(5.4) 𝜃 ↦→
∫
Ω

|Δ𝑢𝜃 + 𝑓 |2d𝑥

if the functions 𝑢𝜃 computed by neural networks have zero boundary values. This ap-

proach is known as residual minimization in the finite element literature. In the context of

neural networks, it can be traced back to [100, 164] and was recently popularized in [269,

237] under the names deep Galerkin method and physics informed neural networks (PINNs)
although not being a Galerkin method in the traditional sense.

Discretization and incorporation of data. In practice, the integrals in the objective

functions (5.2) and (5.4) have to be discretized, which can be done in various ways. For

high dimensional problems stochastic integration techniques are typically used. For

PINNs the choice of the collocation points in the discretization of the loss has been

investigated in a variety of works [183, 215, 85, 313, 291, 303]. In general, both loss

functions can be augmented with data-fitting terms by adding

(5.5)

∑
𝑖

|𝑢𝜃(𝑥𝑖) − 𝑦𝑖 |2 ,

where ((𝑥𝑖 , 𝑦𝑖))𝑖=1,...,𝑁 ⊆ R𝑑 × R are data points corresponding to measurements or ap-

proximate function evaluations. This procedure is standard for PINNs [237].

1Ritz considered a Poisson equation with Neumann boundary values rather then Dirichlet zero boundary

values, which allowed Ritz to work with polynomials without boundary penalty.
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Boundary values. We have introduced both the DRM and PINNs for neural networks

that have zero boundary values, which is not the case for standard feedforward archi-

tectures. Two approaches to deal with this problem are common in the literature: the

construction of neural network based classes with exact boundary values and a relaxation

of the problem together with a penalization of boundary values.

One can transform any unconstrained neural network architecture into an ansatz space

with the desired boundary conditions the following way [164]. Assume we want to

solve the Poisson problem (PE) on Ω with zero boundary values and consider a smooth

function ℎ : Ω → [0,∞) that satisfies ℎ |𝜕Ω = 0 and ℎ |Ω ≠ 0. The function ℎ is often

referred to as a smooth approximation of the distance function to 𝜕Ω. For any family

{𝑢𝜃 : 𝜃 ∈ Θ} ⊆ 𝐻1(Ω) of functions we can consider the associated family

(5.6) {ℎ · 𝑢𝜃 : 𝜃 ∈ Θ} ⊆ 𝐻1

0
(Ω)

and use these functions to approximate the solution of (PE) using either (5.2) or (5.4) as an

objective function for the optimization of the network parameters. For complex domains

it is difficult to obtain ℎ analytically and thus the approximation via neural networks was

proposed by [47]. For time-dependent problems, a similar construction to (5.6) using a

smoothed distance function to the parabolic boundary of the space-time domain can be

used, see [185] for an explicit example.

Another approach is to relax the problem and allow ansatz functions that do not satisfy

the boundary values exactly and to augment the objective function (5.2) and (5.4) with

the boundary penalty term

(5.7) 𝜆 ·
∫
𝜕Ω
𝑢2

𝜃d𝑠

for some 𝜆 ≥ 0. This approach is applicable to all domains and is easy to implement if

one can (uniformly) sample points on the boundary 𝜕Ω. The resulting objective functions

for neural network training are

(5.8) 𝐿 = 𝐿𝜆
DRM

: Θ→ R, 𝜃 ↦→ 1

2

∫
Ω

|∇𝑢𝜃 |2d𝑥 −
∫
Ω

𝑓 𝑢𝜃d𝑥 + 𝜆 ·
∫
𝜕Ω
𝑢2

𝜃d𝑠

for the deep Ritz method and

(5.9) 𝐿 = 𝐿𝜆
PINN

: Θ→ R, 𝜃 ↦→
∫
Ω

|Δ𝑢𝜃 + 𝑓 |2d𝑥 + 𝜆 ·
∫
𝜕Ω
𝑢2

𝜃d𝑠

for physics informed neural networks. The corresponding function space problems are

(5.10) minimize

1

2

∫
Ω

|∇𝑢 |2d𝑥 −
∫
Ω

𝑓 𝑢d𝑥 + 𝜆 ·
∫
𝜕Ω
𝑢2

𝜃d𝑠 subject to 𝑢 ∈ 𝐻1(Ω)

for the deep Ritz method with boundary penalty and

(5.11) minimize

∫
Ω

|Δ𝑢 + 𝑓 |2d𝑥 + 𝜆 ·
∫
𝜕Ω
𝑢2

𝜃d𝑠 subject to 𝑢 ∈ 𝐻2(Ω)

for physics informed neural networks with boundary penalty. Note that for any 𝜆 > 0

the solution of the Poisson problem (PE) is still the unique solution of (5.11), which

makes the theoretical analysis of the boundary penalty method in PINNs significantly

easier. However, the error estimates of boundary penalized PINNs and PINNs with exact

boundary values have different qualitative properties as we discuss in Section 5.5. For the
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deep Ritz method, however, the minimizer of the penalized problem (5.10) does not have

zero boundary values and depends on the penalty 𝜆. Hence, the penalization introduces

a new source of error, which makes the theoretical analysis more delicate.

Contributions. In our work we focus on theoretical guarantees for both the deep Ritz

method as well as physics informed networks that can be made and characterize the error

in different norms in different settings. We do not study the optimization process itself

but rather develop an understanding of the implications of successful training. The main

contributions contained in this chapter can be summarized as follows:

• We provide a convergence guarantee in 𝐻1
norm for the deep Ritz method

for nonlinear problems, when the boundary penalty strength is coupled to the

boundary values required to approximate the solution of the problem; this is

uniform over right hand sides of the PDE (see Theorem 5.1 and 5.21).

• We provide an error estimate in 𝐻1
norm for the deep Ritz method with bound-

ary penalty for elliptic PDEs that depends on the optimization error, the approx-

imation error and the penalization strength (see Theorem 5.3). For the specific

case of ReLU networks and for right hand side 𝑓 ∈ 𝐻𝑟(Ω) this implies that under

perfect training and with penalization strength 𝜆𝑛 ∼ 𝑛
2𝑟+3

2𝑑 the error made by the

deep Ritz method decays like 𝑂(𝑛−𝜌) for any 𝜌 < 2𝑟+3

4𝑑
(see Theorem 5.38). Note

the difference compared to the convergence rate 𝑂(𝑛− 2𝑟+3

2𝑑 ), which is due to the

error introduced by the penalization.

• For residual minimization with boundary penalty, the 𝐻1/2
convergence rate

is known to agree with the 𝐻2
approximation rate; we show that this result is

sharp (see Theorem 5.46) and show that for ansatz classes with exact boundary

values a similar estimate in 𝐻2
hold (see Theorem 5.44).

In Section 5.1 we present these contributions in more detail and discuss their relation to

related works. We defer all proofs to the appendix of the chapter. In Section 5.2 we present

background material on neural networks and Sobolev spaces, where we also point the

reader to our overall notation. In Section 5.3 we present the proofs regarding the uniform

convergence guarantees for possibly nonlinear problems. In Section 5.4 we provide the

proofs for the error estimate for the deep Ritz method with boundary penalty for the

case of linear problems. In Section 5.5 we establish the error estimates regarding physics

informed neural networks.

5.1 Presentation and discussion of the main results

The following section presents the main results of our theoretical analysis, provides brief

insights into the underlying arguments where appropriate, and discusses the relationships

with existing works.

5.1.1. Uniform convergence for the deep Ritz method for nonlinear problems. We

consider an open and bounded set Ω ⊆ R𝑑 with Lipschitz boundary 𝜕Ω. For 𝑛 ∈ N let

Θ𝑛 denote the parameter space of a neural network and let ℱ𝑛 B {𝑢𝜃 : 𝜃 ∈ Θ𝑛} denote

the family of functions parametrized by this network, which we assume to be contained

in the Sobolev space ℱ𝑛 ⊆ 𝑊1,𝑝(Ω) for some 𝑝 ∈ (1,∞). Let 𝐸 : 𝑊1,𝑝(Ω) → (−∞,∞] be a
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functional and (𝜆𝑛)𝑛∈N ⊆ R be a sequence of real numbers. Furthermore, let 𝑓 ∈𝑊1,𝑝(Ω)∗
be fixed and define the functional 𝐸 𝑓 : 𝑊1,𝑝(Ω) → (−∞,∞] by

𝐸 𝑓 (𝑥) B

𝐸(𝑢) − 𝑓 (𝑢) for 𝑢 ∈𝑊1,𝑝

0
(Ω),

+∞ otherwise .

Further, we define the following boundary penalized loss functions

𝐿𝑛 : Θ𝑛 → R, 𝜃 ↦→ 𝐸 𝑓 (𝑢𝜃) + 𝜆𝑛 ∥𝑢𝜃∥𝑝𝐿𝑝(𝜕Ω).

We make the following assumptions:

(A1) Universal approximation: For every 𝑢 ∈ 𝑊1,𝑝

0
(Ω) there are parameters 𝜃𝑛 ∈ Θ𝑛

such that ∥𝑢𝜃𝑛 − 𝑢∥𝑊1,𝑝(Ω) → 0 and 𝜆𝑛 ∥𝑢𝜃𝑛 ∥
𝑝

𝐿𝑝(𝜕Ω) → 0 for 𝑛 →∞.

(A2) The functional 𝐸 is bounded from below, weakly lower semi-continuous with

respect to the weak topology of𝑊1,𝑝(Ω) and continuous and equi-coercive with

respect to the norm topology of𝑊1,𝑝(Ω).
(A3) For every 𝑓 ∈𝑊1,𝑝(Ω)∗, there is a unique minimizer 𝑢 𝑓 ∈𝑊1,𝑝

0
(Ω) of 𝐹 𝑓 and the

solution map

𝑆 : 𝑊1,𝑝(Ω)∗ →𝑊
1,𝑝

0
(Ω) with 𝑓 ↦→ 𝑢 𝑓

is demi-continuous, i.e. maps strongly convergent sequences to weakly conver-

gent ones.

Now we can state the main result, which is a special case of Theorem 5.21. The proof

is based on the tool of Γ-convergence and can be found in Section 5.3

Theorem 5.1 (Uniform convergence of the deep Ritz method). For 𝑓 ∈𝑊1,𝑝(Ω) and 𝛿𝑛 > 0

we define the approximate solution set

𝑆𝑛( 𝑓 ) B
{
𝜃 ∈ Θ𝑛 : 𝐿𝑛(𝜃) ≤ inf

𝜃′∈Θ𝑛

𝐿𝑛(𝜃′) + 𝛿𝑛

}
.

Furthermore, denote the unique minimizer of 𝐸 𝑓 in𝑊1,𝑝

0
(Ω) by 𝑢 𝑓 and fix 𝑅 > 0 and let 𝜆𝑛 →∞

and 𝛿𝑛 → 0 for 𝑛 →∞. Then it holds that

sup

{
∥𝑢𝜃 − 𝑢 𝑓 ∥𝐿𝑝(Ω) : 𝜃 ∈ 𝑆𝑛( 𝑓 ), ∥ 𝑓 ∥𝑊1,𝑝(Ω)∗ ≤ 𝑅

}
→ 0 for 𝑛 →∞.

The theorem above can be formulated for abstract variational problems, however, for

the sake of readability we presented here in the context of the Sobolev spaces 𝑊1,𝑝(Ω)
for expository reasons, see Section 5.3 for a more general statement. The result ensures

that under certain conditions the approximated solutions found by the deep Ritz method

converge uniformly towards the true solution of the problem. For instance, we require

the optimization to be successful, i.e., 𝛿𝑛 → 0, which is a non trivial assumption that we

make since otherwise there is no reason why we could hope for convergence. Further, we

assume that the penalization strength increases towards +∞, which is intuitive and can

be assured by the practitioner. The second requirement on the penalization strength is

formulated in Assumption (A1) that we would like to comment on in more detail here.
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Universal approximation. The penalization strength is not allowed to grow arbitrarily

fast since otherwise the universal approximation Assumption (A1) might not be satisfied.

It is well known by the classical works on neural network approximation that for most

architectures of growing size are able to approximate any given function in𝑊1,𝑝(Ω) [141]

for smooth activation functions and more recent works have also established approxima-

tion rates and treated ReLU networks [127, 306, 262, 138, 106, 88]. Hence, the existence

of 𝜃𝑛 ∈ Θ𝑛 such that ∥𝑢𝜃𝑛 − 𝑢∥𝑊1,𝑝(Ω) → 0 for 𝑛 → ∞ is satisfied for virtually all archi-

tectures and activation functions. Since by the continuity of the trace operator we have

∥𝑢∥𝐿𝑝(𝜕Ω) ≤ 𝑐∥𝑢∥𝑊1,𝑝(Ω) for all 𝑢 ∈ 𝑊1,𝑝(Ω) and therefore ∥𝑢𝜃𝑛 ∥𝐿𝑝(𝜕Ω) → 0 for 𝑛 → ∞. If

the rate of decay is independent of the target function, which it typically is, see [96], we

can choose a growing sequence (𝜆𝑛)𝑛∈N ⊆ R growing to +∞ such that 𝜆𝑛 ∥𝑢𝜃𝑛 ∥
𝑝

𝐿𝑝(𝜕Ω) → 0.

Therefore, we have seen that whenever universal approximation holds uniformly, we can

find a suitable sequence of penalization strengths, which depends on the boundary values

required for universal approximation, such that Assumption (A1) is satisfied. Therefore,

the admissible choice of penalization strengths depends on the specific choice of network

architecture. We discuss the specific choice in more depth for linear problems in Subsec-

tion 5.1.2 and Subsection 5.4.3. For ReLU activation we have the special case that universal

approximation of a function with zero boundary values is possible with neural network

functions with exact zero boundary values.

Theorem 5.2 (Universal approximation with zero boundary values, [102]). Consider an
open set Ω ⊆ R𝑑 and let 𝑢 ∈ 𝑊1,𝑝

0
(Ω) with 𝑝 ∈ [1,∞). Then for all 𝜀 > 0 there exists a function

𝑢𝜀 ∈𝑊1,𝑝

0
(Ω) that can be expressed by a ReLU network of depth ⌈log

2
(𝑑 + 1)⌉ + 1 such that

∥𝑢 − 𝑢𝜀∥𝑊1,𝑝(Ω) ≤ 𝜀.

The proof is a simple consequence that ReLU networks of unrestricted size are able to

exactly compute arbitrary piecewise linear functions [20] and is provided in Section 5.3.

An important consequence of this result is that for the specific choice of ReLU networks

of depth ⌈log
2
(𝑑 + 1)⌉ + 1 and growing width arbitrary strong penalization is admissible

is covered by Theorem 5.1.

The 𝑝-Laplace operator as an example. As an example of a nonlinear PDE that is

covered by Theorem 5.1 we discuss the 𝑝-Laplacian. To this end, consider the 𝑝-Dirichlet

energy for 𝑝 ∈ (1,∞) given by

𝐸 : 𝑊1,𝑝(Ω) → R, 𝑢 ↦→ 1

𝑝

∫
Ω

|∇𝑢 |𝑝 d𝑥.

Note that for 𝑝 ≠ 2 the associated Euler-Lagrange equation – the 𝑝-Laplace equation – is

nonlinear. In strong formulation it is given by

−div(|∇𝑢 |𝑝−2∇𝑢) = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω,

see for example [274] or [246]. As a neural network architecture one can choose ReLU

networks of depth ⌈log
2
(𝑑+1)⌉+1 and width 𝑛 and hence by Theorem 5.2 Assumption (A1)

is satisfied and arbitrary penalization strengths 𝜆𝑛 →∞ can be chosen. For the technical

Assumption (A3) we refer to Subsection 5.3.4. Finally, to provide the demi-continuity we
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must consider the operator 𝑆 : 𝑊
1,𝑝

0
(Ω)∗ → 𝑊

1,𝑝

0
(Ω) mapping 𝑓 to the unique minimizer

𝑢 𝑓 of 𝐸 − 𝑓 on𝑊
1,𝑝

0
(Ω). By the Euler-Lagrange formalism, 𝑢 minimizes 𝐹 𝑓 if and only if∫

Ω

|∇𝑢 |𝑝−2∇𝑢 · ∇𝑣d𝑥 = 𝑓 (𝑣) for all 𝑣 ∈𝑊1,𝑝

0
(Ω).

Hence, the solution map 𝑆 is precisely the inverse of the mapping

𝑊
1,𝑝

0
(Ω) →𝑊

1,𝑝

0
(Ω)∗ , 𝑢 ↦→

(
𝑣 ↦→

∫
Ω

|∇𝑢 |𝑝−2∇𝑢 · ∇𝑣d𝑥

)
and this map is demi-continuous, see for example [246].

Related works. The uniform convergence result Theorem 5.1 provides the first conver-

gence analysis of the deep Ritz method for nonlinear problems. Later, error estimates for

the specific case of the 𝑝-Laplace where established in [155]. For linear elliptic problems

a larger body of works establishing error estimates exist, which we discuss in more detail

in Subsection 5.1.2.

5.1.2. An error estimate for the deep Ritz method with boundary penalty. When

neural networks are used for the approximate minimization of a suitably convex varia-

tional energy the error will scale essentially like the approximation error of the neural

networks, see Subsection 5.4.1. However, the relaxation of the exact Dirichlet boundary

conditions to approximate zero boundary values together with a boundary penalty in-

troduces an additional error. In the previous subsection we have shown that successful

optimization together with a penalization strength increasing according to the approx-

imation properties of the neural networks yields a uniform convergence guarantee for

nonlinear problems. In this subsection focus on linear problems and provide quantita-

tive results on the error made by the deep Ritz method and the admissible choices of

penalization strengths.

For ease of presentation, we discuss our approach for the concrete equation

−div (𝐴∇𝑢) = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω,
(5.12)

where 𝐴 ∈ 𝐿∞(Ω,R𝑑×𝑑) is a symmetric and elliptic coefficient matrix. The weak formula-

tion of this equation gives rise to the bilinear form

𝑎 : 𝐻1(Ω) × 𝐻1(Ω) → R, 𝑎(𝑢, 𝑣) =
∫
Ω

𝐴∇𝑢 · ∇𝑣d𝑥

and the energy

𝐸 : 𝐻1(Ω) → R, 𝐸(𝑢) = 1

2

𝑎(𝑢, 𝑢) − 𝑓 (𝑢)

where 𝑓 ∈ 𝐻1(Ω)∗. Using the boundary penalty method as an approximation for (5.12)

leads to the bilinear form

𝑎𝜆 : 𝐻1(Ω) × 𝐻1(Ω) → R, 𝑎𝜆(𝑢, 𝑣) =
∫
Ω

𝐴∇𝑢∇𝑣d𝑥 + 𝜆
∫
𝜕Ω
𝑢𝑣d𝑠

for a penalty parameter 𝜆 > 0 and the energy

𝐸𝜆 : 𝐻1(Ω) → R, 𝐸𝜆(𝑢) =
1

2

𝑎𝜆(𝑢, 𝑢) − 𝑓 (𝑢).
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The central error estimation is collected in the following Theorem. Note that we require

𝐻2(Ω) regularity of the solution to equation (5.12).

Theorem 5.3. Let Ω ⊂ R𝑑 be a bounded domain with 𝐶1,1 boundary, 𝑓 ∈ 𝐿2(Ω) and assume 𝐴 ∈
𝐶0,1(Ω,R𝑑×𝑑) is symmetric, uniformly elliptic with ellipticity constant 𝛼 > 02. By 𝑢 𝑓 ∈ 𝐻1

0
(Ω)

we denote the solution of (5.12) and by 𝑢𝜆 the minimizer of the penalized energy 𝐸𝜆 over 𝐻1(Ω).
Fix an arbitrary subset 𝑉 ⊂ 𝐻1(Ω) and denote the coercivity constants of 𝑎𝜆 by 𝛼𝜆 > 0 and set
𝛿 B 𝐸𝜆(𝑣) − inf�̃�∈𝑉 𝐸𝜆(�̃�). Then there is a constant 𝑐 > 0, only depending on 𝐴 and Ω, such that
for every 𝑣 ∈ 𝑉 and 𝜆 > 0 it holds that

(5.13) ∥𝑣 − 𝑢 𝑓 ∥𝐻1(Ω) ≤
√

2𝛿
𝛼𝜆
+ 1

𝛼𝜆
inf

�̃�∈𝑉
∥�̃� − 𝑢𝜆∥2𝑎𝜆 + 𝑐𝜆

−1∥ 𝑓 ∥𝐿2(Ω) ,

where ∥𝑢∥2𝑎𝜆 B 𝑎𝜆(𝑢, 𝑢) is the norm induced by 𝑎𝜆. Further, the constant 𝑐 can be bounded in
terms of domain Ω and the coefficient matrix 𝐴, see Theorem 5.28.
Proof sketch. The proof relies on the error decomposition

∥𝑣 − 𝑢 𝑓 ∥𝐻1(Ω) ≤ ∥𝑣 − 𝑢𝜆∥𝐻1(Ω) + ∥𝑢𝜆 − 𝑢 𝑓 ∥𝐻1(Ω) ,

where 𝑢𝜆 ∈ 𝐻1(Ω) is the (unique) minimizer of the energy 𝐸𝜆. The first term can be

estimated using standard arguments, see Subsection 5.4.1, where the second term is more

delicate. The difference 𝑣𝜆 B 𝑢𝜆 − 𝑢 𝑓 (weakly) solves the Robin boundary value problem

−div(𝐴∇𝑣𝜆) = 0 in Ω

𝜕𝜈𝑣𝜆 + 𝜆𝑣𝜆 = 𝑢 𝑓 on 𝜕Ω,

where 𝜕𝜈 denotes the normal derivative, see Subsection 5.4.2. This allows to expand 𝑣𝜆 in

an eigenbasis of weakly 𝐴-harmonic functions, which provides an explicit formula for 𝑣𝜆
and subsequently the desired estimate ∥𝑢𝜆 − 𝑢 𝑓 ∥𝐻1(Ω) ≤ 𝑐𝜆−1

. □

The strategy of the proof of Theorem 5.28 holds for a broader class of elliptic zero

boundary value problems. The essential requirement is that the bilinear form 𝑎 of the

differential operator is coercive on 𝐻1

0
(Ω) and that 𝑎𝜆 is coercive on all of 𝐻1(Ω). Then,

regularity of the solution 𝑢 𝑓 of the zero boundary value problem is required to identify the

equation 𝑢 𝑓 satisfies when tested with functions in 𝐻1(Ω) and not only 𝐻1

0
(Ω), see (5.22).

Theorem 5.3 bounds the distance of a function in terms of the optimization error, the

approximation power of the ansatz class and the penalization strength. Now we discuss

the trade off of choosing the penalization strength 𝜆 too large or too small and discuss

the implications of different scalings of 𝜆 in dependecy of the approximation capabilities

of the ansatz classes. To do so, we consider a sequence (𝑉𝑛)𝑛∈N ⊆ 𝐻1(Ω) of ansatz classes

and penalization strengths 𝜆𝑛 ∼ 𝑛𝜎
. Further, we denote the minimizers of the energies

𝐸𝜆𝑛 over𝑉𝑛 by 𝑣∗𝑛 ∈ 𝑉𝑛 . It is our goal to choose 𝜎 ∈ R in such a way that the upper bound

of ∥𝑣∗𝑛 − 𝑢 𝑓 ∥𝐻1(Ω) in (5.13) decays with the fastest possible rate. Neglecting constants, the

bound evaluates to

∥𝑣∗𝑛 − 𝑢 𝑓 ∥𝐻1(Ω) ≾

√
1

𝛼𝜆𝑛
inf

𝑣∈𝑉𝑛
∥𝑣 − 𝑢𝜆𝑛 ∥2𝑎𝜆𝑛 + 𝜆

−1

𝑛 .(5.14)

2, i.e., 𝑣⊤𝐴(𝑥)𝑣 ≥ 𝛼∥𝑣∥2 for all 𝑥 ∈ Ω, 𝑣 ∈ R𝑑
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We can assume without loss of generality that 𝜎 > 0 and hence 𝜆𝑛 ≥ 1, because otherwise

the upper bound will not decrase to zero. Note that in this case we have 𝛼𝜆𝑛 ≥ 𝛼1 > 0

and hence the we obtain

∥𝑣∗𝑛 − 𝑢 𝑓 ∥𝐻1(Ω) ≾

√
inf

𝑣∈𝑉𝑛

(
∥∇(𝑣 − 𝑢𝜆𝑛 )∥2𝐿2(Ω) + 𝑛

𝜎∥𝑣 − 𝑢𝜆𝑛 ∥2𝐿2(𝜕Ω)

)
+ 𝑛−𝜎 .(5.15)

Here, the trade off in choosing 𝜎 and therefore 𝜆𝑛 too large or small is evident. The

implications of this trade off are captured in the following result.

Theorem 5.4 (Rates for NN training with boundary penalty). Let Ω ⊂ R𝑑 be a bounded
domain with 𝐶𝑟+1,1 boundary for some 𝑟 ∈ N, 𝑓 ∈ 𝐻𝑟(Ω) and assume 𝐴 ∈ 𝐶𝑟,1(Ω,R𝑑×𝑑) is
symmetric, uniformly elliptic with ellipticity constant 𝛼 > 0 and denote the solution to (5.12) by
𝑢 𝑓 ∈ 𝐻1

0
(Ω). For every 𝑛 ∈ N, there is a ReLU network with parameter space Θ𝑛 of dimension

𝒪(log
2

2
(𝑛(𝑟+2)/𝑑) · 𝑛) such that if 𝜆𝑛 ∼ 𝑛𝜎 for 𝜎 = 2𝑟+3

2𝑑
one has for any 𝜌 < 2𝑟+3

4𝑑
that

(5.16) ∥𝑢𝜃𝑛 − 𝑢 𝑓 ∥𝐻1(Ω) ≾
√
𝛿𝑛 + 𝑛−2𝜌 + 𝑛−𝜌 for all 𝜃𝑛 ∈ Θ𝑛 ,

where 𝛿𝑛 = 𝐸𝜆𝑛 (𝑢𝜃𝑛 ) − inf�̃�∈Θ𝑛
𝐸𝜆𝑛 (𝑢�̃�).

Note that the solution 𝑢 𝑓 ∈ 𝐻𝑟+2(Ω) can be approximated at a rate of 𝑂(𝑛−(𝑟+1)/𝑑)
(see Theorem 5.11), which is a faster rate than the rate 𝑂(𝑛−𝜌) obtained by the deep Ritz

method with successful training. In Subsection 5.1.2 we discuss approaches how faster

rates can be achieved under stronger a priori estimates for Robin boundary value problems

or with approximation results that offer a finer analysis of the required boundary values

for approximation.

The error of the deep Ritz method decays at a rate increasing with the smoothness

of the problem. This fact can be especially useful in high spatial dimensions, which is

consistent with the empirical findings that the deep Ritz method can be effective in the

numerical solution of high dimensional problems [110]. Note that also finite element

methods can achieve rates increasing with the smoothness of data, however they require

the delicate construction of higher order elements.

Combination with different approximation results. In Theorem 5.4 we focus on the

ReLU activation in this section, whereas in practice often other architectures and activation

functions are used, see [110, 132]. However, our results from Section 5.4 can handle

arbitrary function classes and hence reduce the computation of error estimates to the

computation of approximation bounds. Therefore, they can be combined with other

approximation results for neural networks in Sobolev norm including the works of [127,

306, 262, 138, 106, 88].

The boundary penalty method for FEM. The boundary penalty method has been

applied in the context of finite element approximations [27] and studied in terms of its

convergence rates in [27, 258, 34]. The idea of the finite element approach is analogue to

the idea of using neural networks for the approximate solution of variational problems.

However, one constructs a nested sequence of finite dimensional vectorspaces𝑉ℎ ⊆ 𝐻1(Ω)
arising from some triangulation with fineness ℎ > 0 and computes the minimizer 𝑢ℎ of

the penalized energy 𝐸𝜆 over 𝑉ℎ . Choosing a suitable triangulation and piecewise affine

linear elements and setting 𝜆 ∼ ℎ−1
one obtains the error estimate

∥𝑢ℎ − 𝑢 𝑓 ∥𝐻1(Ω) ≾ ℎ,
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see [258]. At the core of those estimates lies a linear version of Céa’s Lemma, which already

incorporates boundary values. However, the proof of this lemma heavily relies on the fact

that the class of ansatz functions is linear and that its minimizer solves a linear equation.

This is not the case for non linear function classes like neural networks. Therefore, our

estimates require a different strategy. However, the optimal rate of convergence for the

boundary penalty method with finite elements can be recovered as a special case of our

results, see Subsection 5.4.

Related works. There exist various results that estimate the error of the deep Ritz

method for elliptic equations in a similar setting to the one considered by us [306, 149,

106]. However, all these works consider the case where the variational energy of the

original PDE is coercive on the entire space 𝐻1(Ω), e.g., for example −Δ𝑢 + 𝜇𝑢 = 𝑓 for

some constant 𝜇 > 0. Thus, their analysis of the boundary penalty in the manuscripts

can immediately be deduced from classic results [194] and more importantly it fails to

capture the trade-off in the penalization strength. For Neumann boundary conditions

and under the assumption that the solution of the Poisson problem lies in the Barron

space the generalization error of the deep Ritz method has been studied in [174]. More

recently, error estimates for the deep Ritz method in the context of the 𝑝-Laplace and

the fractional Laplace operator have been established [155, 125]. Further, error estimates

for a generalization of the deep Ritz method dealing with mixed boundary values is due

to [177]. Our main contribution (see Theorem 5.3) is to relax the coercivity assumption

on the operator in the boundary penalty method, allowing operators that are coercive

only on the space 𝐻1

0
(Ω) and hence providing a result that covers the Poisson equation

−Δ𝑢 = 𝑓 with Dirichlet boundary conditions 𝑢 |𝜕Ω = 0.

5.1.3. Implications of exact boundary values in residual minimization. For the deep

Ritz method we obtained an error decay, which might be slower than the approximation

rate, which is due to a trade of in the penalization strength. Here, we study the effect of

exact boundary values for the ansatz of residual minimization. The situation is different

here as both function space problems corresponding to the case of exact boundary val-

ues (5.3) and to penalized boundary values (5.11) have the unique solution to the original

PDE (PE) as their minimizer. Hence, for both cases error estimates can be obtained by

standard arguments and under the assumption of successful training the error will scale

like the approximation error. However, there is a qualitative difference between exact and

penalized boundary values as for exact boundary values the 𝐻2
error scales like the 𝐻2

approximation error where for penalized boundary values the 𝐻1/2
error scales like the

𝐻2
approximation error. Whereas in for the deep Ritz method penalized boundary val-

ues resulted in a decrease in the approximation rate for residual minimization penalized

boundary values lead to estimates with respect to a weaker norm.

We consider again (PE), in particular, we assume that the problem is 𝐻2
regular

meaning that there is a constant 𝐶reg > 0, satisfying

∥𝑢∥𝐻2(Ω) ≤ 𝐶reg∥Δ𝑢∥𝐿2(Ω) for all 𝑢 ∈ 𝐻2(Ω) ∩ 𝐻1

0
(Ω).

Furthermore, we assume that Θ is a parameter set of a neural network type ansatz class,

such that for every 𝜃 ∈ Θ we have 𝑢𝜃 ∈ 𝐻2(Ω) and (𝑢𝜃)|𝜕Ω = 𝑔. As our strategy is to
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minimize the residual we define the loss function

ℒ : Θ→ R, ℒ(𝜃) = ∥Δ𝑢𝜃 + 𝑓 ∥2𝐿2(Ω).

This is for example satisfied when 𝜕Ω ∈ 𝐶1,1
, 𝑓 ∈ 𝐿2(Ω). Alternatively, one can replace

the assumption 𝜕Ω ∈ 𝐶1,1
by requiring that the domain Ω is convex. We refer to [124] for

a detailed discussion of the regularity properties of elliptic equations.

The following result is a direct consequence of the 𝐻2
regularity we assumed and

a similar result is due to [283], although not exploiting the benefits of exact boundary

conditions. Albeit being of simple nature, we believe it can be of practical relevance due

to its easy and explicit error control.

Theorem 5.5 (𝐻2
estimate with exact boundary values). It holds for every 𝜃 ∈ Θ that

∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻2(Ω) ≤ 𝐶reg
√
ℒ(𝜃).

For convex domains, we may estimate the regularity constant explicitely. It holds

𝐶reg ≤
√

1 + 𝐶𝑃 ≤

√√
1 +

(
|Ω|
𝜔𝑑

) 1

𝑑

,

where 𝑑 is the dimension of Ω, 𝜔𝑑 denotes the volume of the unit ball in R𝑑 and 𝐶𝑃 is the Poincaré
constant for functions in 𝐻1

0
(Ω).

Note that in contrast to the estimate (5.13) for the deep Ritz method Theorem 5.5

establishes an a posteriori estimate, i.e., the right hand side can be evaluated during or at

the end of the optimization process.

Let us now turn towards the case of penalized boundary values. Again, by Θ we

denote the parameter set of a neural network type ansatz class, such that for every 𝜃 ∈ Θ
we have 𝑢𝜃 ∈ 𝐻2(Ω), but make no assumptions on its boundary values. As our strategy

is to minimize the residual we define the loss function with boundary penalty

ℒ𝜏 : Θ→ R, ℒ𝜏(𝜃) = ∥Δ𝑢𝜃 + 𝑓 ∥2𝐿2(Ω) + 𝜏∥𝑢𝜃 − 𝑔∥2𝐿2(𝜕Ω) ,

where 𝜏 ∈ (0,∞) is a positive penalization parameter.

Theorem 5.6 (𝐻𝑠
estimates with penalized boundary values). Assume that the domain

Ω ⊆ R𝑑 has a smooth boundary 𝜕Ω ∈ 𝐶∞. Then for 𝑠 ∈ R there is a constant 𝑐 > 0 such that

(5.17) ∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻𝑠 (Ω) ≤ 𝑐
√
ℒ𝜏(𝜃) for all 𝜃 ∈ Θ

and all parametric classes and data 𝑓 ∈ 𝐿2(Ω), 𝑔 ∈ 𝐻3/2(𝜕Ω) if and only if 𝑠 ≤ 1/2.

Comparing this to Theorem 5.5 we see that (5.17) also provides an a posteriori estimate,

however with respect to the weaker 𝐻1/2
norm.

Stronger estimates through stronger penalty. We have seen that the 𝐿2(𝜕Ω) penal-

ization can not lead to estimates in a stronger Sobolev norm than 𝐻1/2(Ω). However,

inspecting inequality (5.37) one could – at least in theory – penalize the boundary values

in the 𝐻3/2(𝜕Ω) norm and would then obtain 𝐻2(Ω) estimates. Not that the 𝐻3/2(𝜕Ω)
norm is difficult to approximate in practice.
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Stronger estimates through interpolation. It is possible to bound the 𝐻𝑠
error for

𝑠 ≥ 1/2 of residual minimization with 𝐿2
boundary penalty for the expense of worse rates

and under the cost of an additional factor for which it is not clear whether it is bounded.

Similar to [53] one can use an interpolation inequality for 𝑠 ∈ [1/2, 2] to obtain

∥𝑢∥𝐻𝑠 (Ω) ≤ ∥𝑢∥2(2−𝑠)/3𝐻1/2(Ω) · ∥𝑢∥
(2𝑠−1)/3
𝐻2(Ω) for all 𝑢 ∈ 𝐻2(Ω).

Together with the a posteriori estimate on the 𝐻1/2
norm, this yields

∥𝑢 𝑓 − 𝑢𝜃∥𝐻𝑠 (Ω) ≤ ∥𝑢 𝑓 − 𝑢𝜃∥2(2−𝑠)/3𝐻1/2(Ω) · ∥𝑢 𝑓 − 𝑢𝜃∥
(2𝑠−1)/3
𝐻2(Ω) ≾ ∥𝑢 𝑓 − 𝑢𝜃∥

(2𝑠−1)/3
𝐻2(Ω) · 𝐿(𝜃)

(2−𝑠)/3

≤
(
∥𝑢 𝑓 ∥𝐻2(Ω) + ∥𝑢𝜃∥𝐻2(Ω)

) (2𝑠−1)/3 · 𝐿(𝜃)(2−𝑠)/3.

Hence, if it is possible to control the 𝐻2
norm of the neural network functions, one

obtains an a posteriori estimate on the 𝐻𝑠
error. Note however, that the 𝐻2

norm of the

neural networks functions is not controlled through the loss function 𝐿 and hence, this

estimates requires an additional explicit or implicit control on the 𝐻2
norm in order to

be informative. Note, however, that the exponent of the a posteriori estimate decreases

towards zero for 𝑠 → 2 and the estimate collapses to a trivial bound for 𝑠 = 2.

Related works. Various theoretical analysis for physics informed neural networks

exist, however, none of these study the influence of exact boundary values. A very general

result showing the existence of uniform estimates without quantifying the uniformity is

due to [197]. Quantitative estimates on the 𝐿2
error made by physics informed networks

for Kolmogorov PDEs and the Navier-Stokes equations are established in [89, 87]. Error

estimates for physics informed networks with respect to the 𝐻1/2
norm of the form of

Theorem 5.5 have been shown in [261] and the generalization error of PINNs has been

studied in [201, 29] and the convergence for growing data has been shown in [260]. In

practice, ansatz functions with exact boundary values have become increasingly popular

as it has been observed to simplify the training process and produce more accurate

solutions, see for instance [47, 243, 185, 74]. The works of [74, 77] explicitly compare

penalized boundary conditions to exactly enforced ones in numerical studies and found

improved accuracy and a faster training process. This is in accordance with [161] that

illustrates the difficulties in the training process stemming from soft penalties in residual

minimization. It is also possible to encode Neumann or Robin boundary conditions in a

similar way, we refer the reader to [185]. However, we mention that the approximation

capabilities of such ansatz classes have not been studied so far.

5.1.4. Outlook. Where have described our contributions above we highlight the follow-

ing directions for future research:

• Approximation theory for boundary values: When working with the boundary

penalty method, the boundary values required for the approximation of a func-

tion play an important role, see Assumption (A1) and Theorem 5.3 as well as the

discussion in Subsection 5.4.3 and in particular (5.15). This asserts that under

the assumption of perfect optimization the error can be estimated according to

∥𝑣∗𝑛 − 𝑢 𝑓 ∥𝐻1(Ω) ≾

√
inf

𝑣∈𝑉𝑛

(
∥∇(𝑣 − 𝑢𝜆𝑛 )∥2𝐿2(Ω) + 𝜆𝑛 ∥𝑣 − 𝑢𝜆𝑛 ∥

2

𝐿2(𝜕Ω)

)
+ 𝜆−1

𝑛
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and hence it is natural to study the approximation error

inf

𝑣∈𝑉𝑛

(
∥∇(𝑣 − 𝑢𝜆𝑛 )∥2𝐿2(Ω) + 𝜆𝑛 ∥𝑣 − 𝑢𝜆𝑛 ∥

2

𝐿2(𝜕Ω)

)
for different neural network based classes. For example, although we have

shown in Theorem 5.2 that ReLU networks can approximate functions 𝑢 ∈ 𝐻1

0
(Ω)

while maintaining exact zero boundary values the rate at which they are able to

do this is not known. Further, the approximation properties of function classes

with exact zero boundary values constructed from neural networks according

to (5.6) are unclear.

• Penalization strategies: Based on our theoretical guarantee in Theorem 5.3 we

have deduced suggestions for scaling of the penalization strengths, see also the

discussion in Subsection 5.4.3. It would be interesting to investigate whether

these suggestions can be used as a general guidance in real world problems.

Note that the benefits of successively increasing the penalization strength have

been demonstrated [77].

• Theoretical analysis of optimizers: Our results decompose the error of the methods

into terms depending on the approximation error, the optimization error and

the penalization error in the case of the deep Ritz method. Hence, it is natural

to study the behavior of different optimizers for this problem. A first analysis

has been carried out in [184] using an NTK argument to show global conver-

gence of gradient descent for shallow networks under an overparametrization

assumption when working with a PINN approach. However, in contrast to su-

pervised learning problems global convergence is not observed in practice. We

believe the problems encountered in neural network based PDE solvers to be

fundamentally different to supervised learning problems as samples are easy

to generate. We believe that the theoretical understanding of the optimization

process requires the development of new theoretical tools rather than an appli-

cation of existing paradigms from the analysis of supervised learning problems.

Further, we believe that the development of efficient optimizers are required for

the advancement of neural network based approaches for the numerical analysis

of PDEs. Chapter 6 is devoted to the development of a natural gradient method

that achieves high accuracy for PINNs and the deep Ritz method.

5.2 Preliminaries regarding Sobolev spaces and neural networks

5.2.1. Notation of Sobolev spaces and Friedrich’s inequality. We denote the space

of functions on Ω ⊆ R𝑑 that are integrable in 𝑝-th power by 𝐿𝑝(Ω), where we assume that

𝑝 ∈ [1,∞). Endowed with

∥𝑢∥𝑝
𝐿𝑝(Ω) B

∫
Ω

|𝑢 |𝑝d𝑥

this is a Banach space, i.e., a complete normed space. If 𝑢 is a multivariate function with

values in R𝑚 we interpret |·| as the Euclidean norm. We denote the subspace of 𝐿𝑝(Ω)
of functions with weak derivatives up to order 𝑘 in 𝐿𝑝(Ω) by 𝑊 𝑘,𝑝(Ω), which is a Banach
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space with the norm

∥𝑢∥𝑝
𝑊 𝑘,𝑝(Ω) B

𝑘∑
𝑙=0

∥𝐷 𝑙𝑢∥𝑝
𝐿𝑝(Ω).

This space is called a Sobolev space and we denote its dual space, i.e., the space consisting

of all bounded and linear functionals on 𝑊 𝑘,𝑝(Ω) by 𝑊 𝑘,𝑝(Ω)∗. The closure of all com-

pactly supported smooth functions 𝒞∞𝑐 (Ω) in 𝑊 𝑘,𝑝(Ω) is denoted by 𝑊
𝑘,𝑝

0
(Ω). It is well

known that if Ω has a Lipschitz continuous boundary the operator that restricts a Lips-

chitz continuous function on Ω to the boundary admits a linear and bounded extension

tr : 𝑊1,𝑝(Ω) → 𝐿𝑝(𝜕Ω). This operator is called the trace operator and its kernel is precisely

𝑊
1,𝑝

0
(Ω). Further, we write ∥𝑢∥𝐿𝑝(𝜕Ω) whenever we mean ∥tr(𝑢)∥𝐿𝑝(𝜕Ω). In the following

we mostly work with the case 𝑝 = 2 and write 𝐻 𝑘
(0)(Ω) instead of𝑊 𝑘,2

(0) (Ω).
In order to study the boundary penalty method we use the Friedrich inequality, which

states that the 𝐿𝑝(Ω) norm of a function can be estimated by the norm of its gradient and

boundary values. We refer to [121] for a proof.

Proposition 5.7 (Friedrich’s inequality). Let Ω ⊆ R𝑑 be a bounded and open set with Lipschitz
boundary 𝜕Ω and 𝑝 ∈ (1,∞). Then there exists a constant 𝑐 > 0 such that

(5.18) ∥𝑢∥𝑝
𝑊1,𝑝(Ω) ≤ 𝑐

𝑝 ·
(
∥∇𝑢∥𝑝

𝐿𝑝(Ω) + ∥𝑢∥
𝑝

𝐿𝑝(𝜕Ω)

)
for all 𝑢 ∈𝑊1,𝑝(Ω).

5.2.2. Neural networks. Here we introduce our notation for the functions represented

by a feedforward neural network. Consider natural numbers 𝑑, 𝑚, 𝐿, 𝑁0 , . . . , 𝑁𝐿 ∈ N and

let

𝜃 = ((𝐴1 , 𝑏1), . . . , (𝐴𝐿 , 𝑏𝐿))
be a tuple of matrix-vector pairs where 𝐴𝑙 ∈ R𝑁𝑙×𝑁𝑙−1 , 𝑏𝑙 ∈ R𝑁𝑙 and 𝑁0 = 𝑑, 𝑁𝐿 = 𝑚.

Every matrix vector pair (𝐴𝑙 , 𝑏𝑙) induces an affine linear map 𝑇𝑙 : R
𝑁𝑙−1 → R𝑁𝑙 . The neural

network function with parameters 𝜃 and with respect to some activation function 𝜌 : R→ R is

the function

𝑢
𝜌
𝜃 : R𝑑 → R𝑚 , 𝑥 ↦→ 𝑇𝐿(𝜌(𝑇𝐿−1(𝜌(· · · 𝜌(𝑇1(𝑥)))))).

The set of all neural network functions of a certain architecture is given by {𝑢𝜌𝜃 : 𝜃 ∈ Θ},
where Θ collects all parameters of the above form with respect to fixed natural numbers

𝑑, 𝑚, 𝐿, 𝑁0 , . . . , 𝑁𝐿. If we have 𝑓 = 𝑢
𝜌
𝜃 for some 𝜃 ∈ Θ we say the function 𝑓 can be realized

by the neural network ℱ 𝜌
Θ

. Note that we often drop the superscript 𝜌 if it is clear from the

context.

A particular activation function often used in practice and relevant for our results is

the rectified linear unit or ReLU activation function, which is defined via 𝑥 ↦→ max {0, 𝑥}.
[20] showed that the class of ReLU networks coincides with the class of continuous and

piecewise linear functions. In particular they are weakly differentiable. Since piecewise

linear functions are dense in 𝐻1

0
(Ω) we obtain the following universal approximation

result.

Theorem 5.2 (Universal approximation with zero boundary values, [102]). Consider an
open set Ω ⊆ R𝑑 and let 𝑢 ∈ 𝑊1,𝑝

0
(Ω) with 𝑝 ∈ [1,∞). Then for all 𝜀 > 0 there exists a function

𝑢𝜀 ∈𝑊1,𝑝

0
(Ω) that can be expressed by a ReLU network of depth ⌈log

2
(𝑑 + 1)⌉ + 1 such that

∥𝑢 − 𝑢𝜀∥𝑊1,𝑝(Ω) ≤ 𝜀.
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Our proof uses that every continuous, piecewise linear function can be represented

by a neural network with ReLU activation function and then shows how to approxi-

mate Sobolev functions with zero boundary conditions by such functions. The precise

definition of a piecewise linear function is the following.

Definition 5.8 (Continuous piecewise linear function). We say a function 𝑓 : R𝑑 → R is

continuous piecewise linear or shorter piecewise linear if there exists a finite set of closed

polyhedra whose union is R𝑑, and 𝑓 is affine linear over each polyhedron. Note every

piecewise linear functions is continuous by definition since the polyhedra are closed and

cover the whole space R𝑑, and affine functions are continuous.

Theorem 5.9 (Universal expression). Every ReLU neural network function 𝑢𝜃 : R𝑑 → R is a
piecewise linear function. Conversely, every piecewise linear function 𝑓 : R𝑑 → R can be expressed
by a ReLU network of depth at most ⌈log

2
(𝑑 + 1)⌉ + 1.

For the proof of this statement we refer to [20]. We turn now to the approximation

capabilities of piecewise linear functions.

Lemma 5.10. Let 𝜑 ∈ 𝐶∞𝑐 (R𝑑) be a smooth function with compact support. Then for every 𝜀 > 0

there is a piecewise linear function 𝑠𝜀 such that for all 𝑝 ∈ [1,∞] it holds

∥𝑠𝜀 − 𝜑∥𝑊1,𝑝(R𝑑) ≤ 𝜀 and supp(𝑠𝜀) ⊆ supp(𝜑) + 𝐵𝜀(0).
Here, we set 𝐵𝜀(0) to be the 𝜀-ball around zero, i.e. 𝐵𝜀(0) = {𝑥 ∈ R : |𝑥 | < 𝜀}.
Proof. In the following we will denote by ∥·∥∞ the uniform norm on R𝑑. To show the

assertion choose a triangulation 𝒯 of R𝑑 of width 𝛿 = 𝛿(𝜀) > 0, consisting of rotations

and translations of one non-degenerate simplex 𝐾. We choose 𝑠𝜀 to agree with 𝜑 on all

vertices of elements in 𝒯 . Since 𝜑 is compactly supported it is uniformly continuous and

hence it is clear that ∥𝜑 − 𝑠𝜀∥∞ < 𝜀 if 𝛿 is chosen small enough.

To show convergence of the gradients we show that also ∥∇𝜑 − ∇𝑠𝜀∥∞ < 𝜀, which will

be shown on one element 𝐾 ∈ 𝒯 and as the estimate is independent of 𝐾 is understood

to hold on all of R𝑑. So let 𝐾 ∈ 𝒯 be given and denote its vertices by 𝑥1 , . . . , 𝑥𝑑+1. We set

𝑣𝑖 = 𝑥𝑖+1 − 𝑥1, 𝑖 = 1, . . . , 𝑑 to be the vectors spanning 𝐾. By the one dimensional mean

value theorem we find 𝜉𝑖 on the line segment joining 𝑥1 and 𝑥𝑖 such that

𝜕𝑣𝑖 𝑠𝜀(𝑣1) = 𝜕𝑣𝑖𝜑(𝜉𝑖).
Note that 𝜕𝑣𝑖 𝑠𝜀 is constant on all of 𝐾 where it is defined. Now for arbitrary 𝑥 ∈ 𝐾
we compute with setting 𝑤 =

∑𝑑
𝑖=1

𝛼𝑖𝑣𝑖 for 𝑤 ∈ R𝑑 with |𝑤 | ≤ 1. Note that the 𝛼𝑖 are

bounded uniformly in 𝑤, where we use that all elements are the same up to rotations and

translations.

|∇𝜑(𝑥) − ∇𝑠𝜀(𝑥)| = sup

|𝑤 |≤1

|∇𝜑(𝑥)𝑤 − ∇𝑠𝜀(𝑥)𝑤 |

≤ sup

|𝑤 |≤1

𝑑∑
𝑖=1

|𝛼𝑖 | · |𝜕𝑣𝑖𝜑(𝑥) − 𝜕𝑣𝑖 𝑠𝜀(𝑥)|︸                   ︷︷                   ︸
=(∗)

where again (∗) is uniformly small due to the uniform continuity of ∇𝜑. Noting that the

𝑊1,∞
-case implies the claim for all 𝑝 ∈ [1,∞) finishes the proof. □

We turn to the proof of Theorem 5.2, which we state again for the convenience of the

reader.
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Proof of Theorem 5.2. Let 𝑢 ∈𝑊1,𝑝

0
(Ω) and 𝜀 > 0. By the density of𝐶∞𝑐 (Ω) in𝑊

1,𝑝

0
(Ω), see for

instance [65], we choose a smooth function 𝜑𝜀 ∈ 𝐶∞𝑐 (Ω) such that ∥𝑢 − 𝜑𝜀∥𝑊1,𝑝(Ω) ≤ 𝜀/2.

Furthermore we use Lemma 5.10 and choose a piecewise linear function 𝑢𝜀 such that

∥𝜑𝜀 − 𝑢𝜀∥𝑊1,𝑝(Ω) ≤ 𝜀/2 and such that 𝑢𝜀 has compact support in Ω. This yields

∥𝑢 − 𝑢𝜀∥𝑊1,𝑝(Ω) ≤ ∥𝑢 − 𝜑𝜀∥𝑊1,𝑝(Ω) + ∥𝜑𝜀 − 𝑢𝜀∥𝑊1,𝑝(Ω) ≤ 𝜀

and by Theorem 5.9 we know that 𝑢𝜀 is in fact a realization of a neural network with depth

at most ⌈log
2
(𝑑 + 1)⌉ + 1. □

To the best of our knowledge this is the only available universal approximation results

where the approximating neural network functions are guaranteed to have zero bound-

ary values. This relies on the special properties of the ReLU activation function and it

is unclear for which classes of activation functions universal approximation with zero

boundary values hold.

The difference of this result to other universal approximation results [141, 79] is the

approximating neural network function are guaranteed to have zero boundary values.

This is a special property of the ReLU activation function and implies the consistency of

the boundary penalty method for arbitrary penalization strengths as we will see later. In

order to quantify the error that is being made by the variational training of ReLU networks

with boundary penalty, we use the following result from [126], where other results on

approximation bounds in Sobolev spaces have been obtained in [127, 306, 262, 263, 138,

107, 88].

Theorem 5.11 (Quantitative universal approximation, [126]). Let Ω ⊆ R𝑑 be a bounded and
open set with Lipschitz regular boundary3, let 𝑘 ∈ (1,∞), 𝑝 ∈ [1,∞] and fix an arbitrary function
𝑢 ∈ 𝑊 𝑘,𝑝(Ω). Then, for every 𝑛 ∈ N, there is a ReLU network 𝑢𝑛 with 𝒪(log

2

2
(𝑛𝑘/𝑑) · 𝑛) many

parameters and neurons such that

∥𝑢 − 𝑢𝑛 ∥𝑊 𝑠,𝑝(Ω) ≤ 𝑐(𝑠) · ∥𝑢∥𝑊 𝑘,𝑝(Ω) · 𝑛−(𝑘−𝑠)/𝑑

for every 𝑠 ∈ [0, 1].
Proof. The approximation results in [126] are stated for functions with the unit cube [0, 1]𝑑
as a domain. However, by scaling and possibly extending functions to the whole ofR𝑑 this

implies analogue results for functions defined on bounded Sobolev extension domains

Ω.

We examine the proof of [126] in order to see that the approximating network archi-

tectures do not depend on 𝑠. Let us fix a function 𝑢 ∈ 𝑊 𝑘,𝑝([0, 1]𝑑). In their notation, for

𝑀 ∈ N, there are functions (𝜙𝑚)𝑚=1,...,𝑀𝑑 and polynomials (𝑝𝑚)𝑚=1,...,𝑀𝑑 , such that𝑢 −∑
𝜙𝑚𝑝𝑚


𝑊 𝑠,𝑝([0,1]𝑑)

≾ ∥𝑢∥𝑊 𝑘,𝑝([0,1]𝑑)𝑀
−(𝑘−𝑠)

and a ReLU network function 𝑢𝑀 with 𝑁 ≾ 𝑀𝑑
log(𝑀𝑘) parameters such that∑𝜙𝑚𝑝𝑚 − 𝑢𝑀


𝑊 𝑠,𝑝([0,1]𝑑)

≤ 𝑐(𝑠)∥𝑢∥𝑊 𝑘,𝑝(Ω)𝑀
−(𝑘−𝑠).

This follows from the Lemma C.3, C.4 and Lemma C.6 in [126] with 𝜀 = 𝑀−𝑘 . Note that the

functions and networks provided by those lemmata do not depend on 𝑠, which is evident

3or more generally, that Ω is a Sobolev extension domain
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as the estimates are first shown for 𝑠 = 0, 1 and then generalized through interpolation.

Now, by the triangle inequality, we have

∥𝑢 − 𝑢𝑀 ∥𝑊 𝑠,𝑝([0,1]𝑑) ≤ 𝑐(𝑠)∥𝑢∥𝑊 𝑘,𝑝([0,1]𝑑)𝑀
−(𝑘−𝑠).

Now the claim follows by choosing 𝑀 ∼ 𝑛1/𝑑
. The additional square of the logarithm

appears since they are considering networks with skip connections and those are then

expressed as networks without skip connections, see also Corollary 4.2 in [126]. □

5.3 Proofs regarding convergence guarantees for the deep Ritz method
for nonlinear problems

5.3.1. Prior on Γ-convergence. We recall the definition of Γ-convergence with respect

to the weak topology of reflexive Banach spaces. For further reading we point the reader

towards [83].

Definition 5.12 (Γ-convergence). Let 𝑋 be a reflexive Banach space as well as 𝐹𝑛 , 𝐹 : 𝑋 →
(−∞,∞]. Then (𝐹𝑛)𝑛∈N is said to be Γ-convergent to 𝐹 if the following two properties are

satisfied.

(i) Liminf inequality: For every 𝑥 ∈ 𝑋 and (𝑥𝑛)𝑛∈N with 𝑥𝑛 ⇀ 𝑥 we have

𝐹(𝑥) ≤ lim inf

𝑛→∞
𝐹𝑛(𝑥𝑛).

(ii) Recovery sequence: For every 𝑥 ∈ 𝑋 there is (𝑥𝑛)𝑛∈N with 𝑥𝑛 ⇀ 𝑥 such that

𝐹(𝑥) = lim

𝑛→∞
𝐹𝑛(𝑥𝑛).

The sequence (𝐹𝑛)𝑛∈N is called equi-coercive if the set⋃
𝑛∈N

{
𝑥 ∈ 𝑋 : 𝐹𝑛(𝑥) ≤ 𝑟

}
is bounded in 𝑋 (or equivalently relatively compact with respect to the weak topology)

for all 𝑟 ∈ R. We say that a sequence (𝑥𝑛)𝑛∈N are quasi minimizers of the functionals (𝐹𝑛)𝑛∈N
if we have

𝐹𝑛(𝑥𝑛) ≤ inf

𝑥∈𝑋
𝐹𝑛(𝑥) + 𝛿𝑛

where 𝛿𝑛 → 0.

We need the following property of Γ-convergent sequences. We want to emphasize the

fact that there are no requirements regarding the continuity of any of the functionals and

that the functionals (𝐹𝑛)𝑛∈N are not assumed to admit minimizers.

Theorem 5.13 (Convergence of quasi-minimizers). Let 𝑋 be a reflexive Banach space and
(𝐹𝑛)𝑛∈N be an equi-coercive sequence of functionals that Γ-converges to 𝐹. Then, any sequence
(𝑥𝑛)𝑛∈N of quasi-minimizers of (𝐹𝑛)𝑛∈N is relatively compact with respect to the weak topology of
𝑋 and every weak accumulation point of (𝑥𝑛)𝑛∈N is a global minimizer of 𝐹. Consequently, if 𝐹
possesses a unique minimizer 𝑥, then (𝑥𝑛)𝑛∈N converges weakly to 𝑥.
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5.3.2. Abstract Γ-convergence result for the deep Ritz method. For the abstract

results we work with an abstract energy 𝐸 : 𝑋 → R. This reduces technicalities in the

proofs and separates abstract functional analytic considerations from applications.

Setting 5.14. Let (𝑋, ∥·∥𝑋) and (𝐵, ∥·∥𝐵) be reflexive Banach spaces and 𝛾 ∈ ℒ(𝑋, 𝐵) be a
continuous linear map. We set 𝑋0 to be the kernel of 𝛾, i.e., 𝑋0 = 𝛾−1({0}). Let 𝜌 : R → R be
some activation function and denote by (Θ𝑛)𝑛∈N a sequence of neural network parameters. We
assume that any function represented by such a neural network is a member of 𝑋 and we define

(5.19) 𝐴𝑛 B {𝑥𝜃 : 𝜃 ∈ Θ𝑛} ⊆ 𝑋.

Here, 𝑥𝜃 denotes the function represented by the neural network with the parameters 𝜃. Let
𝐸 : 𝑋 → (−∞,∞] be a functional and (𝜆𝑛)𝑛∈N a sequence of real numbers with 𝜆𝑛 → ∞.
Furthermore, let 𝑝 ∈ (1,∞) and 𝑓 ∈ 𝑋∗ be fixed and define the functional 𝐹 𝑓𝑛 : 𝑋 → (−∞,∞] by

𝐹
𝑓
𝑛 (𝑥) =


𝐸(𝑥) + 𝜆𝑛 ∥𝛾(𝑥)∥𝑝𝐵 − 𝑓 (𝑥) for 𝑥 ∈ 𝐴𝑛 ,

∞ otherwise ,

as well as 𝐹 𝑓 : 𝑋 → (−∞,∞] by

𝐹 𝑓 (𝑥) =

𝐸(𝑥) − 𝑓 (𝑥) for 𝑥 ∈ 𝑋0 ,

∞ otherwise .

Then assume the following holds:
(B.A1) For every 𝑥 ∈ 𝑋0 there is 𝑥𝑛 ∈ 𝐴𝑛 such that 𝑥𝑛 → 𝑥 and 𝜆𝑛 ∥𝛾(𝑥𝑛)∥𝑝𝐵 → 0 for 𝑛 →∞.
(B.A2) The functional 𝐸 is bounded from below, weakly lower semi-continuous with respect

to the weak topology of (𝑋, ∥·∥𝑋) and continuous with respect to the norm topology of
(𝑋, ∥·∥𝑋).

(B.A3) The sequence (𝐹 𝑓𝑛 )𝑛∈N is equi-coercive with respect to the norm ∥·∥𝑋 .
Remark 5.15. We discuss the Assumptions (B.A1) to (B.A3) in view of their applicability

to concrete problems.

(i) In applications, (𝑋, ∥·∥𝑋) will usually be a Sobolev space with its natural norm,

the space 𝐵 contains boundary values of functions in 𝑋 and the operator 𝛾 is

a boundary value operator, e.g. the trace map. However, if the energy 𝐸 is

coercive on all of 𝑋, i.e. without adding boundary terms to it, we might choose

𝛾 = 0 and obtain 𝑋0 = 𝑋. This is the case for non-essential boundary value

problems.

(ii) The Assumption (B.A1) compensates that in general, we cannot penalize with

arbitrary strength. However, if we can approximate any member of 𝑋0 by a

sequence 𝑥𝜃𝑛 ∈ 𝐴𝑛 ∩ 𝑋0 then any divergent sequence (𝜆𝑛)𝑛∈N can be chosen.

This is for example the case for the ReLU activation function and the space

𝑋0 = 𝐻1

0
(Ω). More precisely, we can choose 𝐴𝑛 to be the class of functions

expressed by a (fully connected) ReLU network of depth ⌈log
2
(𝑑 + 1)⌉ + 1 and

width 𝑛, see Theorem 5.2.

Theorem 5.16 (Γ-convergence). Assume we are in Setting 5.14. Then the sequence (𝐹 𝑓𝑛 )𝑛∈N of
functionals Γ-converges towards 𝐹 𝑓 . In particular, if (𝛿𝑛)𝑛∈N is a sequence of non-negative real
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numbers converging to zero, any sequence of 𝛿𝑛-quasi minimizers of 𝐹 𝑓𝑛 is bounded and all its
weak accumulation points are minimizers of 𝐹 𝑓 . If additionally 𝐹 𝑓 possesses a unique minimizer
𝑥 𝑓 ∈ 𝑋0, any sequence of 𝛿𝑛-quasi minimizers converges to 𝑥 𝑓 in the weak topology of 𝑋.
Proof. We begin with the limes inferior inequality. Let 𝑥𝑛 ⇀ 𝑥 in 𝑋 and assume that

𝑥 ∉ 𝑋0. Then 𝑓 (𝑥𝑛) converges to 𝑓 (𝑥) as real numbers and 𝛾(𝑥𝑛) converges weakly to

𝛾(𝑥) ≠ 0 in 𝐵. Combining this with the weak lower semi-continuity of ∥ · ∥𝑝
𝐵

we get, using

the boundedness from below, that

lim inf

𝑛→∞
𝐹
𝑓
𝑛 (𝑥𝑛) ≥ inf

𝑥∈𝑋
𝐸(𝑥) + lim inf

𝑛→∞
𝜆𝑛 ∥𝛾(𝑥𝑛)∥𝑝𝐵 − lim

𝑛→∞
𝑓 (𝑥𝑛) = ∞.

Now let 𝑥 ∈ 𝑋0. Then by the weak lower semi-continuity of 𝐸 we find

lim inf

𝑛→∞
𝐹
𝑓
𝑛 (𝑥𝑛) ≥ lim inf

𝑛→∞
𝐸(𝑥𝑛) − 𝑓 (𝑥) ≥ 𝐸(𝑥) − 𝑓 (𝑥) = 𝐹 𝑓 (𝑥).

Now let us have a look at the construction of the recovery sequence. For 𝑥 ∉ 𝑋0 we can

choose the constant sequence and estimate

𝐹
𝑓
𝑛 (𝑥𝑛) ≥ 𝐸(𝑥) + 𝜆𝑛 ∥𝛾(𝑥)∥

𝑝

𝐵
− 𝑓 (𝑥).

Hence we find that 𝐹
𝑓𝑛
𝑛 (𝑥) → ∞ = 𝐹 𝑓 (𝑥). If 𝑥 ∈ 𝑋0 we approximate it with a sequence

(𝑥𝑛) ⊆ 𝑋 according to Assumption (B.A1), such that 𝑥𝑛 ∈ 𝐴𝑛 and 𝑥𝑛 → 𝑥 in ∥·∥𝑋 and

𝜆𝑛 ∥𝛾(𝑥𝑛)∥𝑝𝐵 → 0. It follows that

𝐹
𝑓
𝑛 (𝑥𝑛) = 𝐸(𝑥𝑛) + 𝜆𝑛 ∥𝑥𝑛 ∥

𝑝

𝐵
− 𝑓 (𝑥𝑛) → 𝐸(𝑥) − 𝑓 (𝑥) = 𝐹 𝑓 (𝑥).

□

A sufficient criterion for equi-coercivity of the sequence (𝐹 𝑓𝑛 )𝑛∈N from Assumption (B.A3)

in terms of the functional 𝐸 is given by the following lemma.

Lemma 5.17 (Criterion for Equi-Coercivity). Assume we are in Setting 5.14. If there is a
constant 𝑐 > 0 such that it holds for all 𝑥 ∈ 𝑋 that

𝐸(𝑥) + ∥𝛾(𝑥)∥𝑝
𝐵
≥ 𝑐 ·

(
∥𝑥∥𝑝

𝑋
− ∥𝑥∥𝑋 − 1

)
,

then the sequence (𝐹 𝑓𝑛 )𝑛∈N is equi-coercive.
Proof. It suffices to show that the sequence

𝐺
𝑓
𝑛 : 𝑋 → R with 𝐺

𝑓
𝑛(𝑥) = 𝐸(𝑥) + 𝜆𝑛 ∥𝛾(𝑥)∥

𝑝

𝐵
− 𝑓 (𝑥)

is equi-coercive, as 𝐺
𝑓
𝑛 ≤ 𝐹

𝑓
𝑛 . So let 𝑟 ∈ R be given and assume that 𝑟 ≥ 𝐺

𝑓
𝑛(𝑥). We

estimate assuming without loss of generality that 𝜆𝑛 ≥ 1

𝑟 ≥ 𝐸(𝑥) + 𝜆𝑛 ∥𝛾(𝑥)∥𝑝𝐵 − 𝑓 (𝑥)
≥ 𝑐 ·

(
∥𝑥∥𝑝

𝑋
− ∥𝑥∥𝑋 − 1

)
− ∥ 𝑓 ∥𝑋∗ · ∥𝑥∥𝑋

≥ 𝑐 ·
(
∥𝑥∥𝑝

𝑋
− ∥𝑥∥𝑋 − 1

)
.

As 𝑝 > 1, a scaled version of Young’s inequality clearly implies a bound on the set⋃
𝑛∈N

{
𝑥 ∈ 𝑋 : 𝐺

𝑓
𝑛(𝑥) ≤ 𝑟

}
and hence the sequence (𝐹 𝑓𝑛 )𝑛∈N is seen to be equi-coercive. □
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5.3.3. Abstract uniform convergence result for the deep Ritz method. In this sec-

tion we present an extension of Setting 5.14 that allows to prove uniform convergence

results over certain bounded families of right-hand sides.

Setting 5.18. Assume we are in Setting 5.14. Furthermore, let there be an additional norm |·| on
𝑋 such that the dual space (𝑋, |·|)∗ is reflexive. However, we do not require (𝑋, |·|) to be complete.
Then, let the following assumptions hold

(B.A4) The identity Id : (𝑋, ∥·∥𝑋) → (𝑋, |·|) is completely continuous, i.e., maps weakly
convergent sequences to strongly convergent ones.

(B.A5) For every 𝑓 ∈ 𝑋∗, there is a unique minimizer 𝑥 𝑓 ∈ 𝑋0 of 𝐹 𝑓 and the solution map

𝑆 : 𝑋∗
0
→ 𝑋0 with 𝑓 ↦→ 𝑥 𝑓

is demi-continuous, i.e. maps strongly convergent sequences to weakly convergent ones.
Remark 5.19. As mentioned earlier, (𝑋, ∥·∥𝑋) is usually a Sobolev space with its natural

norm. The norm |·| may then chosen to be an 𝐿𝑝(Ω) or 𝑊 𝑠,𝑝(Ω) norm, where 𝑠 is

strictly smaller than the differentiability order of 𝑋. In this case, Rellich’s compactness

theorem [65] provides Assumption (B.A4).

Lemma 5.20 (Compactness). Assume we are in Setting 5.18. Then the solution operator
𝑆 : (𝑋, |·|)∗ → (𝑋0 , |·|) is completely continuous, i.e., maps weakly convergent sequences to
strongly convergent ones.
Proof. We begin by clarifying what we mean with 𝑆 being defined on (𝑋, |·|)∗. Denote by

𝑖 the inclusion map 𝑖 : 𝑋0 → 𝑋 and consider

(𝑋, |·|)∗ Id
∗
−−→ (𝑋, ∥·∥𝑋)∗

𝑖∗−−→ (𝑋0 , ∥·∥𝑋)∗
𝑆−−→ (𝑋0 , ∥·∥𝑋)

Id−−→ (𝑋0 , |·|).

By abusing notation, always when we refer to 𝑆 as defined on (𝑋, |·|)∗ we mean the

above composition, i.e., Id ◦𝑆 ◦ 𝑖∗ ◦ Id
∗
. Having explained this, it is clear that it suffices

to show that Id
∗

maps weakly convergent sequences to strongly convergent ones since

𝑖∗ is continuous, 𝑆 demi-continuous and Id strongly continuous. This, however, is a

consequence of Schauder’s theorem, see for instance [9], which states that a linear map

𝐿 ∈ ℒ(𝑋,𝑌) between Banach spaces is compact if and only if 𝐿∗ ∈ ℒ(𝑌∗ , 𝑋∗) is. Here,

compact means that 𝐿 maps bounded sets to relatively compact ones. Let 𝑋𝑐 denote

the completion of (𝑋, |·|). Then, using the reflexivity of (𝑋, ∥·∥𝑋) it is easily seen that

Id : (𝑋, ∥·∥𝑋) → 𝑋𝑐 is compact. Finally, using that (𝑋, |·|)∗ = 𝑋∗𝑐 the desired compactness

of Id
∗

is established. □

The following theorem is the main result of this section. It shows that the convergence

of the Deep Ritz method is uniform on bounded sets in the space (𝑋, |·| )∗. The proof of

the uniformity follows an idea from [76], where in a different setting a compactness result

was used to amplify pointwise convergence to uniform convergence across bounded sets,

compare to Theorem 4.1 and Corollary 4.2 in [76].

Theorem 5.21 (Uniform Convergence of the Deep Ritz Method). Assume that we are in
Setting 5.18 and let 𝛿𝑛 ↘ 0 be a sequence of real numbers. For 𝑓 ∈ 𝑋∗ we set

𝑆𝑛( 𝑓 ) B
{
𝑥 ∈ 𝑋 : 𝐹

𝑓
𝑛 (𝑥) ≤ inf

𝑧∈𝑋
𝐹
𝑓
𝑛 (𝑧) + 𝛿𝑛

}
,
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which is the approximate solution set corresponding to 𝑓 and 𝛿𝑛 . Furthermore, denote the unique
minimizer of 𝐹 𝑓 in 𝑋0 by 𝑥 𝑓 and fix 𝑅 > 0. Then we have

sup

{
|𝑥 𝑓𝑛 − 𝑥 𝑓 | : 𝑥

𝑓
𝑛 ∈ 𝑆𝑛( 𝑓 ), ∥ 𝑓 ∥(𝑋, |·| )∗ ≤ 𝑅

}
→ 0 for 𝑛 →∞.

In the definition of this supremum, 𝑓 is measured in the norm of the space (𝑋, |·| )∗.
This means that 𝑓 : (𝑋, |·| ) → R is continuous, which is a more restrictive requirement

than the continuity with respect to ∥·∥𝑋 . Also the computation of this norm takes place

in the unit ball of (𝑋, |·| ), i.e.

∥ 𝑓 ∥(𝑋, |·| )∗ = sup

|𝑥 |≤1

𝑓 (𝑥).

Before we prove Theorem 5.21 we need a Γ-convergence result similar to Theorem 5.16.

The only difference is, that now also the right-hand side may vary along the sequence.

Proposition 5.22. Assume that we are in Setting 5.18, however, we do not need Assumption
(B.A5) for this result. Let 𝑓𝑛 , 𝑓 ∈ (𝑋, |·|)∗ such that 𝑓𝑛 ⇀ 𝑓 in the weak topology of the reflexive
space (𝑋, |·|)∗. Then the sequence (𝐹 𝑓𝑛𝑛 )𝑛∈N of functionals Γ-converges to 𝐹 𝑓 in the weak topology
of (𝑋, ∥·∥𝑋). Furthermore, the sequence (𝐹 𝑓𝑛𝑛 )𝑛∈N is equi-coercive.
Proof. The proof is almost identical to the one of Theorem 5.16 but since it is brief, we

include it for the reader’s convenience. We begin with the limes inferior inequality. Let

𝑥𝑛 ⇀ 𝑥 in 𝑋 and 𝑥 ∉ 𝑋0. Then 𝑥𝑛 → 𝑥 with respect to |·|, which implies that 𝑓𝑛(𝑥𝑛)
converges to 𝑓 (𝑥). Using that 𝛾(𝑥𝑛) ⇀ 𝛾(𝑥) in 𝐵 combined with the weak lower semi-

continuity of ∥ · ∥𝑝
𝐵

we get

lim inf

𝑛→∞
𝐹
𝑓𝑛
𝑛 (𝑥𝑛) ≥ inf

𝑥∈𝑋
𝐸(𝑥) + lim inf

𝑛→∞
𝜆𝑛 ∥𝛾(𝑥𝑛)∥𝑝𝐵 − lim

𝑛→∞
𝑓𝑛(𝑥𝑛) = ∞.

Now let 𝑥 ∈ 𝑋0. Then by the weak lower semi-continuity of 𝐸 we find

lim inf

𝑛→∞
𝐹
𝑓𝑛
𝑛 (𝑥𝑛) ≥ lim inf

𝑛→∞
𝐸(𝑥𝑛) − 𝑓 (𝑥) ≥ 𝐸(𝑥) − 𝑓 (𝑥) = 𝐹 𝑓 (𝑥).

Now let us have a look at the construction of the recovery sequence. For 𝑥 ∉ 𝑋0 we can

choose the constant sequence and estimate

𝐹
𝑓𝑛
𝑛 (𝑥) ≥ inf

𝑥∈𝑋
𝐸(𝑥) + 𝜆𝑛 ∥𝛾(𝑥)∥𝑝𝐵 − ∥ 𝑓𝑛 ∥(𝑋,|·|)′ · |𝑥 |.

As ∥ 𝑓𝑛 ∥(𝑋,|·|)∗ is bounded we find 𝐹
𝑓𝑛
𝑛 (𝑥) → ∞ = 𝐹 𝑓 (𝑥). If 𝑥 ∈ 𝑋0 we approximate it with

a sequence (𝑥𝑛) ⊆ 𝑋 according to Assumption (B.A1), such that 𝑥𝑛 ∈ 𝐴𝑛 and 𝑥𝑛 → 𝑥 in

∥·∥𝑋 and 𝜆𝑛 ∥𝛾(𝑥𝑛)∥𝑝𝐵 → 0. It follows that

𝐹
𝑓𝑛
𝑛 (𝑥𝑛) = 𝐸(𝑥𝑛) + 𝜆𝑛 ∥𝑥𝑛 ∥

𝑝

𝐵
− 𝑓𝑛(𝑥𝑛) → 𝐸(𝑥) − 𝑓 (𝑥) = 𝐹 𝑓 (𝑥).

The equi-coercivity was already assumed in (B.A3) so it does not need to be shown. □

Proof of Theorem 5.21. We can choose ( 𝑓𝑛) ⊆ (𝑋, |·|)∗ and ∥ 𝑓𝑛 ∥(𝑋,|·|)∗ ≤ 𝑅 and 𝑥
𝑓𝑛
𝑛 ∈ 𝑆𝑛( 𝑓𝑛)

such that

sup

∥ 𝑓 ∥(𝑋, |·| )∗≤𝑅
𝑥
𝑓
𝑛∈𝑆𝑛( 𝑓 )

��𝑥 𝑓𝑛 − 𝑥 𝑓 �� ≤ ��𝑥 𝑓𝑛𝑛 − 𝑥 𝑓𝑛 �� + 1

𝑛
.

Now it suffices to show that |𝑥 𝑓𝑛𝑛 − 𝑥 𝑓𝑛 | converges to zero. Since ( 𝑓𝑛)𝑛∈N is bounded in

(𝑋, |·|)∗ and this space is reflexive we can without loss of generality assume that 𝑓𝑛 ⇀ 𝑓
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in (𝑋, |·|)∗. This implies by Lemma 5.20 that 𝑥 𝑓𝑛 → 𝑥 𝑓 in (𝑋, |·|). The Γ-convergence result

of the previous proposition yields 𝑥
𝑓𝑛
𝑛 ⇀ 𝑥 𝑓 in 𝑋 and hence 𝑥

𝑓𝑛
𝑛 → 𝑥 𝑓 with respect to |·|,

which concludes the proof. □

5.3.4. A nonlinear PDE: The 𝑝-Laplace. As an example for the uniform convergence

of the Deep Ritz method we discuss the 𝑝-Laplacian. To this end, consider the 𝑝-Dirichlet

energy for 𝑝 ∈ (1,∞) given by

𝐸 : 𝑊1,𝑝(Ω) → R, 𝑢 ↦→ 1

𝑝

∫
Ω

|∇𝑢 |𝑝 d𝑥.

Note that for 𝑝 ≠ 2 the associated Euler-Lagrange equation – the 𝑝-Laplace equation – is

nonlinear. In strong formulation it is given by

−div(|∇𝑢 |𝑝−2∇𝑢) = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω,

see for example [274] or [246]. Choosing the ReLU activation function, the abstract setting

is applicable as we will describe now. For the Banach spaces we choose

𝑋 =𝑊1,𝑝(Ω), 𝐵 = 𝐿𝑝(𝜕Ω), |𝑢 | = ∥𝑢∥𝐿𝑝(Ω)

where the norms ∥·∥𝑋 and ∥·∥𝐵 are chosen to be the natural ones. Clearly, 𝑊1,𝑝(Ω)
endowed with the norm ∥·∥𝑊1,𝑝(Ω) is reflexive by our assumption 𝑝 ∈ (1,∞). Note that it

holds (
𝑊1,𝑝(Ω), ∥·∥𝐿𝑝(Ω)

)∗
= 𝐿𝑝(Ω)∗ � 𝐿𝑝′(Ω),

which is also reflexive. We set 𝛾 = tr, i.e.

tr : 𝑊1,𝑝(Ω) → 𝐿𝑝(𝜕Ω) with 𝑢 ↦→ 𝑢 |𝜕Ω

We use the same ansatz sets (𝐴𝑛)𝑛∈N as in the previous example, hence Assumption (B.A1)

holds. Rellich’s theorem provides the complete continuity of the embedding(
𝑊1,𝑝(Ω), ∥·∥𝑊1,𝑝(Ω)

)
→

(
𝑊1,𝑝(Ω), ∥·∥𝐿𝑝(Ω)

)
which shows Assumption (B.A4). As for Assumption (B.A3), Friedrich’s inequality pro-

vides the assumptions of Lemma 5.17. Furthermore, 𝐸 is continuous with respect to

∥·∥𝑊1,𝑝(Ω) and convex, hence also weakly lower semi-continuous. By Poincaré’s and

Young’s inequality we find for all 𝑢 ∈𝑊1,𝑝

0
(Ω) that

𝐹 𝑓 (𝑢) = 1

𝑝

∫
Ω

|∇𝑢 |𝑝d𝑥 − 𝑓 (𝑢)

≥ 𝐶 ∥𝑢∥𝑝
𝑊1,𝑝(Ω) − ∥ 𝑓 ∥𝑊1,𝑝(Ω)′ ∥𝑢∥𝑊1,𝑝(Ω)

≥ 𝐶 ∥𝑢∥𝑝
𝑊1,𝑝(Ω) − �̃�.

Hence, a minimizing sequence in 𝑊
1,𝑝

0
(Ω) for 𝐹 𝑓 is bounded and as 𝐹 𝑓 is strictly convex

on 𝑊
1,𝑝

0
(Ω) it possesses a unique minimizer. Finally, to provide the demi-continuity we
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must consider the operator 𝑆 : 𝑊
1,𝑝

0
(Ω)∗ → 𝑊

1,𝑝

0
(Ω) mapping 𝑓 to the unique minimizer

𝑢 𝑓 of 𝐸 − 𝑓 on𝑊
1,𝑝

0
(Ω). By the Euler-Lagrange formalism, 𝑢 minimizes 𝐹 𝑓 if and only if∫

Ω

|∇𝑢 |𝑝−2∇𝑢 · ∇𝑣d𝑥 = 𝑓 (𝑣) for all 𝑣 ∈𝑊1,𝑝

0
(Ω).

Hence, the solution map 𝑆 is precisely the inverse of the mapping

𝑊
1,𝑝

0
(Ω) →𝑊

1,𝑝

0
(Ω)∗ , 𝑢 ↦→

(
𝑣 ↦→

∫
Ω

|∇𝑢 |𝑝−2∇𝑢 · ∇𝑣d𝑥

)
and this map is demi-continuous, see for example [246].

5.4 Proofs regarding error estimates for the deep Ritz method with
boundary penalty

5.4.1. A Céa lemma. The following proof of Céa’s Lemma is based on the curvature

properties of a quadratic, coercive energy defined on a Hilbert space. Note that in the

following proposition, 𝑉 does not need to be a vector space.

Proposition 5.23 (Céa’s Lemma). Let𝑋 be a Hilbert space,𝑉 ⊆ 𝑋 any subset and 𝑎 : 𝑋×𝑋 → R
a symmetric, continuous and 𝛼-coercive bilinear form. For 𝑓 ∈ 𝑋∗ define the quadratic energy
𝐸(𝑢) B 1

2
𝑎(𝑢, 𝑢) − 𝑓 (𝑢) and denote its unique minimizer by 𝑢∗. Then for every 𝑣 ∈ 𝑉 it holds

that

∥𝑣 − 𝑢∗∥𝑋 ≤
√

2𝛿
𝛼
+ 1

𝛼
inf

�̃�∈𝑉
∥�̃� − 𝑢∗∥2𝑎 ,

where 𝛿 = 𝐸(𝑣) − inf�̃�∈𝑉 𝐸(�̃�) and ∥𝑢∥2𝑎 B 𝑎(𝑢, 𝑢) is the norm induced by 𝑎.
Proof. As 𝐸 is quadratic it can be exactly expanded using Taylor’s formula. Hence, for

every ℎ ∈ 𝑋 it holds that

𝐸(𝑢 + ℎ) = 𝐸(𝑢∗) + 1

2

𝐷2𝐸(𝑢∗)(ℎ, ℎ) = 𝐸(𝑢∗) + 1

2

𝑎(ℎ, ℎ) = 𝐸(𝑢∗) + 1

2

∥ℎ∥2𝑎 ,

where we used 𝐷𝐸(𝑢∗) = 0. Inserting 𝑣 − 𝑢∗ for ℎ we obtain

𝐸(𝑣) − 𝐸(𝑢∗) = 1

2

𝑎(𝑣 − 𝑢∗ , 𝑣 − 𝑢∗) ≥ 𝛼
2

∥𝑣 − 𝑢∗∥2𝑋 .

On the other hand we compute

𝐸(𝑣) − 𝐸(𝑢∗) = 𝐸(𝑣) − inf

�̃�∈𝑉
𝐸(�̃�) + inf

�̃�∈𝑉
(𝐸(�̃�) − 𝐸(𝑢∗))

= 𝛿 + 1

2

inf

�̃�∈𝑉
∥�̃� − 𝑢∗∥2𝑎 .

Combining the two estimates and rearranging terms yields the assertion. □

Proposition 5.23 is all we need to derive error estimates for coercive problems with

non-essential boundary conditions. We give an example.

Corollary 5.24 (Neumann Problem). Let Ω ⊂ R𝑑 be a bounded Lipschitz domain and let 𝑓 be
a fixed member of 𝐻1(Ω)∗. Denote by 𝑢 ∈ 𝐻1(Ω) the weak solution to

−Δ𝑢 + 𝑢 = 𝑓 in 𝐻1(Ω)∗.
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Let Θ be the parameter set of a neural network architecture such that 𝑢𝜃 ∈ 𝐻1(Ω) for every 𝜃 ∈ Θ.
Then for every 𝜃 ∈ Θ it holds

∥𝑢𝜃 − 𝑢∥𝐻1(Ω) ≤
√

2𝛿 + inf

𝜂∈Θ
∥𝑢𝜂 − 𝑢∥2𝐻1(Ω)

where
𝛿 = ∥𝑢𝜃∥2𝐻1(Ω) − 𝑓 (𝑢𝜃) − inf

𝜂∈Θ

[
∥𝑢𝜂∥2𝐻1(Ω) − 𝑓 (𝑢𝜂)

]
.

Proof. The bilinear form corresponding to the above Neumann problem is

𝑎 : 𝐻1(Ω) × 𝐻1(Ω) → R, 𝑎(𝑢, 𝑣) =
∫
Ω

∇𝑢∇𝑣 + 𝑢𝑣d𝑥

and therefore its coercivity constant is 𝛼 = 1 and the associated norm ∥·∥𝑎 is the natural

one on 𝐻1(Ω). Employing Proposition 5.23 yields the assertion. □

Remark 5.25. Corollary 5.24 yields𝐻1(Ω) convergence of the Deep Ritz Method provided

the ansatz class possesses universal approximation properties with respect to the 𝐻1(Ω)
norm. This is of course also a necessary requirement and fulfilled by a wide class

of network architectures and activation functions, see [141, 79] or for approximation

rates [126]. We stress that any (quantitative) universal approximation theorem for Sobolev

topologies can be combined with the above result, such as Theorem 5.11 for ReLU neural

networks.

Furthermore, the form of the differential equation in the above corollary can easily

be generalized. One can for example consider general second order elliptic PDEs in

divergence form with non-essential boundary conditions as long as these are coercive

and can be derived from a minimization principle.

Remark 5.26 (Dimension Dependence and Adaptation to Smoothness). Assume the solu-

tion 𝑢 to the Neumann problem is a member of 𝐻 𝑘(Ω) for some 𝑘 > 1. Then applying the

quantitative universal approximation Theorem 5.11 we estimate

∥𝑢𝜃 − 𝑢∥𝐻1(Ω) ≾
√

2𝛿 + 𝑐 · ∥𝑢∥𝐻𝑘 (Ω)𝑛−(𝑘−1)/𝑑 ,

where 𝑑 ∈ N is the spatial dimension. While this estimate is not dimension independent,

it indicates how smoothness mitigates the deterioration of error decay rates for high

dimensions. We see that the merit of neural networks to achieve approximation rates

increasing with the smoothness of the target function carries over to the error decay in

the deep Ritz method. In contrast, to achieve the approximation rate and an error decay

rate of (𝑘 − 1)/𝑑 with finite elements one needs to for example use 𝑃𝑘−1
elements [111],

which complicates the ansatz class and therefore the approach.

Remark 5.27 (Practical Realization of Rates). There is a gap between the theory and

the practice of neural network based methods for the solution of PDEs. Error decay

rates, as predicted by our results cannot be observed in practice due to the difficulties of

computing minima of non-convex functions. In practice, one observes moderate errors

that don’t decrease beyond a certain accuracy when the numbers of the parameters of

the neural network ansatz architecture are increased. We refer to [170] and the references

therein for a more detailed description of this phenomenon.
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However, what one observes is that neural network based methods in general and the

Deep Ritz Method in particular are well suited for problems in high spatial dimensions or

a high dimensional parameter space. Practical evidence can already be found in the paper

introducing the Deep Ritz Method, see [110] and further high dimensional examples –

even of industrial scale – can be found in [132]. We propose to view our results as a

qualitative explanation of these observations.

5.4.2. An error estimate for the boundary penalty method. The treatment of Dirich-

let boundary conditions corresponds to a constrained optimization problem, as in stan-

dard neural network architectures zero boundary values cannot be directly encoded. We

use the boundary penalty method as a way to enforce Dirichlet boundary conditions. For

ease of presentation, we discuss our approach for the concrete equation

−div (𝐴∇𝑢) = 𝑓 in Ω

𝑢 = 0 on 𝜕Ω,
(5.20)

where 𝐴 ∈ 𝐿∞(Ω,R𝑑×𝑑) is a symmetric and elliptic coefficient matrix. The weak formula-

tion of this equation gives rise to the bilinear form

𝑎 : 𝐻1(Ω) × 𝐻1(Ω) → R, 𝑎(𝑢, 𝑣) =
∫
Ω

𝐴∇𝑢 · ∇𝑣d𝑥

and the energy

𝐸 : 𝐻1(Ω) → R, 𝐸(𝑢) = 1

2

𝑎(𝑢, 𝑢) − 𝑓 (𝑢)

where 𝑓 ∈ 𝐻1(Ω)∗. Using the boundary penalty method as an approximation for (5.20)

leads to the bilinear form

𝑎𝜆 : 𝐻1(Ω) × 𝐻1(Ω) → R, 𝑎𝜆(𝑢, 𝑣) =
∫
Ω

𝐴∇𝑢∇𝑣d𝑥 + 𝜆
∫
𝜕Ω
𝑢𝑣d𝑠

for a penalty parameter 𝜆 > 0 and the energy

𝐸𝜆 : 𝐻1(Ω) → R, 𝐸𝜆(𝑢) =
1

2

𝑎𝜆(𝑢, 𝑢) − 𝑓 (𝑢).

The central error estimation is collected in the following Theorem. Note that we require

𝐻2(Ω) regularity of the solution to equation (5.20).

Theorem 5.28. Let Ω ⊂ R𝑑 be a bounded domain with 𝐶1,1 boundary, 𝑓 ∈ 𝐿2(Ω) and assume
𝐴 ∈ 𝐶0,1(Ω,R𝑑×𝑑) is symmetric, uniformly elliptic with ellipticity constant 𝛼 > 0. By 𝑢∗ ∈
𝐻1

0
(Ω) we denote the solution of (5.20) and by 𝑢𝜆 the minimizer of the penalized energy 𝐸𝜆 over

𝐻1(Ω). Fix an arbitrary subset 𝑉 ⊂ 𝐻1(Ω) and denote the coercivity constants of 𝑎𝜆 by 𝛼𝜆 > 0

and set 𝛿 B 𝐸𝜆(𝑣) − inf�̃�∈𝑉 𝐸𝜆(�̃�). Then there is a constant 𝑐 > 0, only depending on 𝐴 and Ω,
such that for every 𝑣 ∈ 𝑉 and 𝜆 > 0 it holds that

(5.21) ∥𝑣 − 𝑢∗∥𝐻1(Ω) ≤
√

2𝛿
𝛼𝜆
+ 1

𝛼𝜆
inf

�̃�∈𝑉
∥�̃� − 𝑢𝜆∥2𝑎𝜆 + 𝑐𝜆

−1∥ 𝑓 ∥𝐿2(Ω) ,

where ∥𝑢∥2𝑎𝜆 B 𝑎𝜆(𝑢, 𝑢) is the norm induced by 𝑎𝜆. Further, we can choose

𝑐 B 𝑐𝐹𝑐reg
√
∥𝑎1∥∥𝑇∥ℒ(𝐻2(Ω);ℋ(Ω)) ,
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where 𝑇 : 𝐻2(Ω) → 𝐻1(Ω) maps a function 𝑢 to the 𝐴-harmonic extension of4 𝜕𝐴𝑢, 𝑐𝐹 denotes
the Friedrich constant (see Proposition 5.7) and 𝑐reg is the operator norm of

(−div(𝐴∇·))−1

: 𝐿2(Ω) → 𝐻2(Ω) ∩ 𝐻1

0
(Ω).

Proof. The central idea of the proof consists of the error decomposition

∥𝑣 − 𝑢∗∥𝐻1(Ω) ≤ ∥𝑣 − 𝑢𝜆∥𝐻1(Ω) + ∥𝑢𝜆 − 𝑢∗∥𝐻1(Ω).

The first error can be treated using Céa’s Lemma. Note that 𝑎𝜆 is in fact coercive on𝐻1(Ω),
which is a consequence of Friedrich’s inequality, see Proposition 5.7. For the second term

one uses a Fourier series expansion in a Steklov basis. The latter is useful for weakly

𝐴-harmonic functions, hence we investigate the equation satisfied by 𝑣𝜆 B 𝑢∗ − 𝑢𝜆. Due

to the regularity assumption on Ω and 𝐴 we have div(𝐴∇𝑢∗) ∈ 𝐿2(Ω) and may integrate

by parts to obtain for all 𝜑 ∈ 𝐻1(Ω)

(5.22)

∫
Ω

𝑓 𝜑d𝑥 = −
∫
Ω

div(𝐴∇𝑢∗)𝜑d𝑥 =

∫
Ω

𝐴∇𝑢∗∇𝜑d𝑥 −
∫
𝜕Ω

𝜕𝐴𝑢
∗𝜑d𝑠.

Using the optimality condition of 𝑢𝜆 yields∫
Ω

(𝐴∇𝑢𝜆) · ∇𝜑d𝑥 + 𝜆
∫
𝜕Ω
𝑢𝜆𝜑d𝑠 =

∫
Ω

𝑓 𝜑d𝑥 ∀𝜑 ∈ 𝐻1(Ω).

Subtracting these two equations we obtain that 𝑣𝜆 satisfies∫
Ω

(𝐴∇𝑣𝜆) · ∇𝜑d𝑥 +
∫
𝜕Ω
(𝜆𝑣𝜆 − 𝜕𝐴𝑢

∗)𝜑d𝑠 = 0 ∀𝜑 ∈ 𝐻1(Ω).

This implies that 𝑣𝜆 is weakly 𝐴-harmonic, i.e.,∫
Ω

(𝐴∇𝑣𝜆) · ∇𝜑d𝑥 = 0 ∀𝜑 ∈ 𝐻1

0
(Ω),

We claim that there exists a basis (𝑒 𝑗)𝑗∈N of the space of weakly 𝐴-harmonic functions and

that 𝑣𝜆 can be written in terms of this basis as

(5.23) 𝑣𝜆 =
1

𝜆

∞∑
𝑗=0

𝑐(𝜆)𝑗𝑒 𝑗

for suitable coefficients 𝑐(𝜆)𝑗 ∈ R. Further, we claim that this Fourier expansion leads to

the estimate

(5.24) ∥𝑣𝜆∥𝐻1(Ω) ≤
𝑐

𝜆
∥ 𝑓 ∥𝐿2(Ω)

with 𝑐 as specified in the statement of the Theorem, which finishes the proof. The

remaining details are provided in the following Section. □

We presented the proof in its above form to draw attention to its key elements and to

discuss possible limitations and generalizations.

Remark 5.29 (Limitations). Our proof requires crucially the 𝐻2(Ω) regularity of the so-

lution 𝑢∗ to the Dirichlet problem. This is in contrast with the error estimates for non-

essential boundary value problems that do not require additional regularity.

4here 𝜕𝐴𝑢 = 𝜈 · 𝐴∇𝑢 and 𝜈 denotes the outer normal of Ω
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Remark 5.30 (Generalizations). The strategy of the proof of Theorem 5.28 holds for a

broader class of elliptic zero boundary value problems. The essential requirement is that

the bilinear form 𝑎 of the differential operator is coercive on 𝐻1

0
(Ω) and that 𝑎𝜆 is coercive

on all of 𝐻1(Ω). Then, regularity of the solution 𝑢∗ of the zero boundary value problem

is required to identify the equation 𝑢∗ satisfies when tested with functions in 𝐻1(Ω) and

not only 𝐻1

0
(Ω), see (5.22).

Remark 5.31 (Optimality of the rate 𝜆−1
). We demonstrate that the rate5

∥𝑢𝜆 − 𝑢∗∥𝐻1(Ω) ≾ 𝜆−1

can not in general be improved. To this end we consider the concrete example

𝑎𝜆 : 𝐻1(0, 1)2 → R, (𝑢, 𝑣) ↦→
∫

1

0

𝑢′𝑣′d𝑥 + 𝜆(𝑢(0)𝑣(0) + 𝑢(1)𝑣(1)).

The minimizer of 𝐸𝜆 with 𝑓 ≡ 1 solves the ODE

−𝑢′′ = 1 in (0, 1)

with Robin boundary conditions

−𝑢′(0) + 𝜆𝑢(0) = 0

𝑢′(1) + 𝜆𝑢(1) = 0.

Its solution is given by

𝑢𝜆(𝑥) = −
1

2

𝑥2 + 1

2

𝑥 + 1

2𝜆
.

On the other hand the associated Dirichlet problem is solving the same ODE subject to

𝑢(0) = 𝑢(1) = 0 and has the solution

𝑢∗(𝑥) = −1

2

𝑥2 + 1

2

𝑥.

Consequently the difference 𝑢𝜆 − 𝑢∗ measured in 𝐻1(0, 1) norm is precisely
1

2𝜆 .

A solution formula based on Steklov eigenfunctions. The Steklov theory yields the

existence of an orthonormal eigenbasis of the space

ℋ(Ω) B
{
𝑤 ∈ 𝐻1(Ω) : 𝑎(𝑤, 𝑣) = 0 for all 𝑣 ∈ 𝐻1

0
(Ω)

}
.

of weakly 𝑎-harmonic functions, which we can use for a Fourier expansion of 𝑣𝜆 in order

to obtain the desired estimate. For a recent and more general discussion of Steklov theory

we refer to [23]. The Steklov eigenvalue problem consists of finding (𝜇, 𝑤) ∈ R × 𝐻1(Ω)
such that

(5.25) 𝑎(𝑤, 𝜑) = 𝜇

∫
𝜕Ω
𝑤𝜑d𝑠 for all 𝜑 ∈ 𝐻1(Ω).

We call 𝜇 a Steklov eigenvalue and 𝑤 a corresponding Steklov eigenfunction.

Lemma 5.32 (Orthogonal decomposition). We can decompose the space 𝐻1(Ω) into

𝐻1(Ω) = ℋ(Ω) ⊕𝑎1
𝐻1

0
(Ω)

with the decomposition being 𝑎1-orthogonal.

5We write ≾ and ≿ if the inequality ≤ or ≥ holds up to a constant; if both ≾ and ≿ hold, we write ∼.
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Proof. By the definition of 𝑎1 and ℋ(Ω) the two spaces are 𝑎1 orthogonal. To see that it

spans all of 𝐻1(Ω) let 𝑢 ∈ 𝐻1(Ω) be given. Let 𝑢𝑎 be the unique solution of 𝑎(𝑢𝑎 , ·) = 0 in

𝐻1

0
(Ω)∗ subject to tr(𝑢𝑎) = tr(𝑢). Then the decomposition is given as 𝑢 = 𝑢𝑎 + (𝑢 − 𝑢𝑎) =

𝑢𝑎 + 𝑢∗. □

Theorem 5.33 (Steklov spectral theorem). Let Ω ⊆ R𝑑 be open and 𝑎 be a positive semi-definite
bilinear form on 𝐻1(Ω) and ℋ(Ω) ↩→ 𝐿2(𝜕Ω) be compact. Then there exists a non decreasing
sequence (𝜇𝑗)𝑗∈N ⊆ [0,∞) with 𝜇𝑗 →∞ and a sequence (𝑒 𝑗)𝑗∈N ⊆ ℋ(Ω) such that 𝜇𝑗 is a Steklov
eigenvalue with eigenfunction 𝑒 𝑗 . Further, (𝑒 𝑗)𝑗∈N is a complete orthonormal system inℋ(Ω) with
respect to 𝑎1.
Proof. This can be derived from the spectral theory for compact operators as for example

described in [101, Section 8.10]. In the notation of [101], set 𝑋 = ℋ(Ω)with inner product

𝑎1 and let𝑌 = 𝐿2(𝜕Ω) equipped with its natural inner product. Then this yields a divergent

sequence 0 < �̃�1 ≤ �̃�2 ≤ . . . growing to∞ and (𝑒 𝑗)𝑗∈N ⊆ ℋ(Ω)with 𝑎1(𝑒𝑖 , 𝑒 𝑗) = 𝛿𝑖 𝑗 and

(5.26) 𝑎1(𝑒 𝑗 , 𝑤) = �̃�𝑗

∫
𝜕Ω
𝑒 𝑗𝑤d𝑠 for all 𝑤 ∈ ℋ(Ω).

For 𝜑 ∈ 𝐻1(Ω), let 𝜑 = 𝜑𝑎 + 𝜑0 be the orthogonal decomposition of the preceding lemma

and compute

𝑎1(𝑒 𝑗 , 𝜑) = 𝑎1(𝑒 𝑗 , 𝜑0) + 𝑎1(𝑒 𝑗 , 𝜑𝑎) = 𝑎1(𝑒 𝑗 , 𝜑𝑎) = �̃�𝑗

∫
𝜕Ω
𝑒 𝑗𝜑𝑎d𝑠 = �̃�𝑗

∫
𝜕Ω
𝑒 𝑗𝜑d𝑠.

Using the definition of 𝑎1 we obtain

𝑎(𝑒 𝑗 , 𝜑) = (�̃�𝑗 − 1)
∫
𝜕Ω
𝑒 𝑗𝜑d𝑠 for all 𝜑 ∈ 𝐻1(Ω).

Setting 𝜇𝑗 B �̃�𝑗 − 1 and noting that the above equality implies 𝜇𝑗 ≥ 0 concludes the

proof. □

As a direct consequence we obtain the following representation formula.

Corollary 5.34 (Fourier expansion in the Steklov eigenbasis). Let 𝑤 ∈ ℋ(Ω). Then we have

𝑤 =

∞∑
𝑗=0

𝑐 𝑗𝑒 𝑗 ,

where

(5.27) 𝑐 𝑗 = (1 + 𝜇𝑗)
∫
𝜕Ω
𝑤𝑒 𝑗d𝑠.

Proof. Using that 𝑒 𝑗 is a Steklov eigenvector, we can compute the Fourier coefficients

𝑐 𝑗 = 𝑎1(𝑤, 𝑒 𝑗) = 𝑎(𝑤, 𝑒 𝑗) +
∫
𝜕Ω
𝑤𝑒 𝑗d𝑠 = (1 + 𝜇𝑗)

∫
𝜕Ω
𝑤𝑒 𝑗d𝑠.

□

Lemma 5.35 (Solution formula). Let 𝑣𝜆 ∈ 𝐻1(Ω) be the unique solution of

(5.28) 𝑎(𝑣𝜆 , 𝜑) +
∫
𝜕Ω
(𝜆𝑣𝜆 − 𝜕𝐴𝑢

∗)𝜑 𝑑𝑠 = 0 for all 𝜑 ∈ 𝐻1(Ω).
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Then we have

𝑣𝜆 =
1

𝜆

∞∑
𝑗=0

𝑐(𝜆)𝑗𝑒 𝑗 ,

where
𝑐(𝜆)𝑗 =

1 + 𝜇𝑗
1 + 𝜇𝑗

𝜆

·
∫
𝜕Ω
(𝜕𝐴𝑢∗)𝑒 𝑗d𝑠.

Proof. Note that 𝑣𝜆 is weakly harmonic and hence, we can apply the previous corollary to

compute the Fourier coefficients of 𝑣𝜆. Using that 𝑣𝜆 solves (5.28) and that 𝑒 𝑗 is a Steklov

eigenfunction we compute∫
𝜕Ω
𝑣𝜆𝑒 𝑗d𝑠 =

1

𝜆

∫
𝜕Ω
(𝜕𝐴𝑢∗)𝑒 𝑗d𝑠 −

1

𝜆
𝑎(𝑣𝜆 , 𝑒 𝑗) =

1

𝜆

∫
𝜕Ω
(𝜕𝐴𝑢∗)𝑒 𝑗d𝑠 −

𝜇𝑗
𝜆

∫
𝜕Ω
𝑣𝜆𝑒 𝑗d𝑠.

Rearranging this yields the following equation, which completes the proof∫
𝜕Ω
𝑣𝜆𝑒 𝑗d𝑠 =

1

𝜆
· 1

1 + 𝜇𝑗
𝜆

∫
𝜕Ω
(𝜕𝐴𝑢∗)𝑒 𝑗d𝑠.

□

Proof of Theorem 5.28. We use the explicit solution formula from Lemma 5.35 for

𝑣𝜆 = 𝑢∗ − 𝑢𝜆 to provide the missing claims in the proof of Theorem 5.28.

Completing the proof of Theorem 5.28. We have already convinced ourselves that the dif-

ference 𝑣𝜆 B 𝑢𝜆 − 𝑢∗ indeed solves (5.28). By the means of Lemma 5.35 it suffices to

bound  ∞∑
𝑗=0

𝑐(𝜆)𝑗𝑒 𝑗

𝐻1(Ω)

independently of 𝜆 > 0. Let us denote the 𝐴-harmonic extension of 𝜕𝐴𝑢∗ with 𝑤, we

obtain

𝑐(𝜆)2𝑗 ≤ (1 + 𝜇𝑗)
2

(∫
𝜕Ω
(𝜕𝐴𝑢∗)𝑒 𝑗d𝑠

)
2

= 𝑎1(𝑤, 𝑒 𝑗)2.

Now we can estimate

∞∑
𝑗=0

(1 + 𝜇𝑗)2
(∫

𝜕Ω
(𝜕𝐴𝑢∗)𝑒 𝑗d𝑠

)
2

=

∞∑
𝑗=0

𝑎1(𝑤, 𝑒 𝑗)2 = 𝑎1(𝑤, 𝑤)

≤ ∥𝑎1∥ ∥𝑤∥2𝐻1(Ω)

≤ ∥𝑎1∥ ∥𝑢∗∥2𝐻2(Ω)∥𝑇∥
2

ℒ(𝐻2(Ω);𝐻1(Ω))

≤ ∥𝑎1∥ 𝑐2

reg∥ 𝑓 ∥2𝐿2(Ω)∥𝑇∥
2

ℒ(𝐻2(Ω);𝐻1(Ω)) ,

where 𝑇 : 𝐻2 → 𝐻1
is the mapping that assigns a function 𝑢 the harmonic extension of

𝜕𝐴𝑢. Consequently, we obtain by Parseval’s identity

∥𝑣𝜆∥𝐻1(Ω) ≤ 𝑐𝐹∥𝑣𝜆∥𝑎1
=
𝑐𝐹

𝜆

√√√ ∞∑
𝑗=1

𝑐(𝜆)2
𝑗
≤ 𝑐𝐹

𝜆

√
∥𝑎1∥ 𝑐reg∥ 𝑓 ∥𝐿2(Ω)∥𝑇∥ℒ(𝐻2(Ω);𝐻1(Ω)) ,

which finishes the proof. □
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Estimates under lower regularity of the right-hand side. If 𝑓 ∉ 𝐿2(Ω), Theorem 5.28

cannot be applied as the estimation of the term ∥𝑢𝜆−𝑢∗∥𝐻1(Ω) requires that 𝑢∗ is a member

of 𝐻2(Ω). The next Lemma shows that at the expense of a worse rate and norm, we can

still estimate this term for distributional right-hand sides 𝑓 ∈ 𝐻1(Ω)∗.
Lemma 5.36. Let Ω ⊂ R𝑑 be a bounded domain with 𝐶1,1 boundary, assume that 𝐴 ∈
𝐶0,1(Ω,R𝑑×𝑑) is symmetric and uniformly elliptic, 𝑓 ∈ 𝐻1(Ω)∗ and let 𝑢∗ and 𝑢𝜆 be as in
Theorem 5.28. Then it holds

∥𝑢𝜆 − 𝑢∗∥𝐿2(Ω) ≤ 𝑐 · ∥ 𝑓 ∥𝐻1(Ω)∗𝜆
−1/2.

Proof. We set 𝑣𝜆 = 𝑢𝜆 − 𝑢∗ and denote by 𝑤 ∈ 𝐻1

0
(Ω) the solution to the equation

−div(𝐴∇𝑤) = 𝑣𝜆 in 𝐻1

0
(Ω)∗. Then, by our assumptions on Ω and 𝐴, the function 𝑤

is a member of𝐻2(Ω). This yields upon integration by parts and the fact that 𝑣𝜆 is weakly

𝐴-harmonic that it holds

∥𝑣𝜆∥2𝐿2(Ω) =

∫
Ω

𝐴∇𝑤 · ∇𝑣𝜆d𝑥 −
∫
𝜕Ω

𝜕𝐴𝑤𝑣𝜆d𝑠

= −
∫
𝜕Ω

𝜕𝐴𝑤𝑢𝜆d𝑠

≤ 𝑐∥𝑤∥𝐻2(Ω)∥𝑢𝜆∥𝐿2(𝜕Ω)

≤ 𝑐∥𝑣𝜆∥𝐿2(Ω)∥𝑢𝜆∥𝐿2(𝜕Ω).

It remains to estimate ∥𝑢𝜆∥𝐿2(𝜕Ω). Note that 𝑢𝜆 satisfies

0 =

∫
Ω

𝐴∇𝑢𝜆 · ∇𝑢𝜆d𝑥 + 𝜆
∫
𝜕Ω
𝑢2

𝜆d𝑠 − 𝑓 (𝑢𝜆).

We get after rearranging and using Young’s inequality

∥𝑢𝜆∥2𝐿2(𝜕Ω) =
2

𝜆

(
𝑓 (𝑢𝜆) −

(∫
Ω

𝐴∇𝑢𝜆 · ∇𝑢𝜆d𝑥 + 𝜆
2

∥𝑢𝜆∥𝐿2(𝜕Ω)

))
≤ 2

𝜆

(
∥ 𝑓 ∥𝐻1(Ω)∗ ∥𝑢𝜆∥𝐻1(Ω) − 𝛼𝜆/2∥𝑢𝜆∥2𝐻1(Ω)

)
≤
∥ 𝑓 ∥2

𝐻1(Ω)∗

2𝛼𝜆/2𝜆
,

which completes the proof. □

5.4.3. Penalization strength and error decay. We have seen that the distance of an

ansatz function can be bounded in terms of the optimization error, the approximation

power of the ansatz class and the penalization strength. In this section we discuss the

trade off of choosing the penalization strength 𝜆 too large or too small and discuss the

implications of different scalings of 𝜆 in dependecy of the approximation capabilities

of the ansatz classes. We combine our general discussion with Theorem 5.11 to obtain

Theorem 5.38, however, our discussion can be combined with any result guaranteeing

approximation rates of a sequence of ansatz classes.

We consider a sequence (𝑉𝑛)𝑛∈N ⊆ 𝐻1(Ω) of ansatz classes and penalization strengths

𝜆𝑛 ∼ 𝑛𝜎
. Further, we denote the minimizers of the energies 𝐸𝜆𝑛 over 𝑉𝑛 by 𝑣∗𝑛 ∈ 𝑉𝑛 . It is
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our goal to choose 𝜎 ∈ R in such a way that the upper bound of ∥𝑣∗𝑛 − 𝑢∗∥𝐻1(Ω) in (5.21)

decays with the fastest possible rate. Neglecting constants, the bound evaluates to

∥𝑣∗𝑛 − 𝑢∗∥𝐻1(Ω) ≾

√
1

𝛼𝜆𝑛
inf

𝑣∈𝑉𝑛
∥𝑣 − 𝑢𝜆𝑛 ∥2𝑎𝜆𝑛 + 𝜆

−1

𝑛 .(5.29)

We can assume without loss of generality that 𝜎 > 0 and hence 𝜆𝑛 ≥ 1, because otherwise

the upper bound will not decrase to zero. Note that in this case we have 𝛼𝜆𝑛 ≥ 𝛼1 > 0

and hence the we obtain

∥𝑣∗𝑛 − 𝑢∗∥𝐻1(Ω) ≾

√
inf

𝑣∈𝑉𝑛

(
∥∇(𝑣 − 𝑢𝜆𝑛 )∥2𝐿2(Ω) + 𝑛

𝜎∥𝑣 − 𝑢𝜆𝑛 ∥2𝐿2(𝜕Ω)

)
+ 𝑛−𝜎 .(5.30)

Here, the trade off in choosing 𝜎 and therefore 𝜆𝑛 too large or small is evident. We discuss

the implications of this upper bound in three different scenarios.

Approximation rates with zero boundary values. Consider the case where there is

an element 𝑣𝑛 ∈ 𝑉𝑛 ∩ 𝐻1

0
(Ω) such that

∥𝑣𝑛 − 𝑢∗∥𝐻1(Ω) ≾ 𝑛
−𝑟 .

Using the Euler-Lagrange equations 𝑎𝜆(𝑢𝜆 , ·) = 𝑓 (·) and 𝑎(𝑢∗ , ·) = 𝑓 (·)we can estimate

1

2

inf

𝑣∈𝑉𝑛
∥𝑣 − 𝑢𝜆∥2𝑎𝜆 = inf

𝑣∈𝑉𝑛
𝐸𝜆(𝑣) − 𝐸𝜆(𝑢𝜆) ≤ inf

𝑣∈𝑉𝑛∩𝐻1

0
(Ω)
𝐸𝜆(𝑣) − 𝐸(𝑢𝜆)

≤ inf

𝑣∈𝑉𝑛∩𝐻1

0
(Ω)
𝐸(𝑣) − 𝐸(𝑢∗) = 1

2

inf

𝑣∈𝑉𝑛∩𝐻1

0
(Ω)
∥𝑣 − 𝑢∗∥2𝑎 ≾ 𝑛−2𝑟

independently of 𝜆. Hence, the estimate (5.29) yields

∥𝑣∗𝑛 − 𝑢∗∥𝐻1(Ω) ≾
√
𝑛−2𝑟 + 𝜆−1

𝑛 ≾ 𝑛
−𝑟 ,

whenever 𝜆𝑛 ≿ 𝑛𝑟 . Note that in this case, no trade off in 𝜆 exists and the approximation

rate with zero boundary values can always be achieved up to optimization. However, the

curvature 𝛼𝜆𝑛 of 𝐸𝜆𝑛 increases with 𝜆𝑛 . Thus, it seems reasonable to choose 𝜆𝑛 as small

as possible, i.e., 𝜆𝑛 ∼ 𝑛𝑟 . Approximation rates with zero boundary values have not been

established so far for neural networks to the best of our knowledge.

Approximation error of 𝑢𝜆 independent of 𝜆. Now, we consider the case, without an

approximation rate with exact zero boundary values, but where the sequence (𝑉𝑛)𝑛∈N of

ansatz classes admits approximation rates in both 𝐻1(Ω) and 𝐿2(𝜕Ω). More precisely, we

assume that there are real numbers 𝑠 ≥ 𝑟 > 0 such that for every (sufficiently big) 𝜆 and

every 𝑛 ∈ N there is an element 𝑣𝑛 ∈ 𝑉𝑛 satisfying

∥𝑣𝑛 − 𝑢𝜆∥𝐻1(Ω) ≤ 𝑐𝑛−𝑟 and ∥𝑣𝑛 − 𝑢𝜆∥𝐿2(𝜕Ω) ≤ 𝑐𝑛−𝑠 ,

for some 𝑐 > 0 independent on 𝜆. Then the estimate in (5.30) yields

∥𝑣∗𝑛 − 𝑢∗∥𝐻1(Ω) ≾
√
𝑛−2𝑟 + 𝑛𝜎−2𝑠 + 𝑛−𝜎 .

The resulting rate of decay of the upper bound of the error is then

𝜌(𝜎) = min

(
1

2

min(2𝑟, 2𝑠 − 𝜎), 𝜎
)
= min

(
𝑟, 𝑠 − 𝜎

2

, 𝜎
)
.
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which is maximized at 𝜎∗ = 2𝑠/3 with a value of

(5.31) 𝜌∗ = min

(
2

3

𝑠, 𝑟

)
.

In this case, the upper bound does not necessarily decay at the same rate as the approxi-

mation error, which decays with rate 𝑟. Note that because 𝐻1(Ω) embeds into 𝐿2(𝜕Ω) we

can assume without loss of generality that 𝑠 ≥ 𝑟.
We made the assumption that the approximation rates of 𝑟 and 𝑠 holds with the same

constant independently of𝜆. This is for example the case, if the solutions 𝑢𝜆 are uniformly

in 𝜆 bounded in 𝐻𝑠(Ω) for some 𝑠 > 1.

Approximation rates for 𝑢∗. Now we want to discuss the case, where we weaken

the approximation assumption from above, which is uniformly in 𝜆. More precisely, we

assume that there is a constant 𝑐 > 0 and elements 𝑣𝑛 ∈ 𝑉𝑛 satisfying

∥𝑣𝑛 − 𝑢∗∥𝐻1(Ω) ≤ 𝑐𝑛−𝑟 and ∥𝑣𝑛 − 𝑢∗∥𝐿2(𝜕Ω) ≤ 𝑐𝑛−𝑠 .
By (5.24) (or equivalently Theorem 5.28 with 𝑉 = 𝐻1(Ω) and 𝑣 = 𝑢𝜆) and the triangle

inequality we have

∥𝑣𝑛 − 𝑢𝜆∥𝐻1(Ω) ≤ ∥𝑣𝑛 − 𝑢∗∥𝐻1(Ω) + ∥𝑢∗ − 𝑢𝜆∥𝐻1(Ω) ≤ 𝑐𝑛−𝑟 + 𝑐′𝑛−𝜎 ≤ 𝑐𝑛−𝑟

and similarly

∥𝑣𝑛 − 𝑢𝜆∥𝐿2(𝜕Ω) ≤ 𝑐𝑛−𝑠 + 𝑐′𝑛−𝜎 ≤ 𝑐𝑛−𝑠 ,
where 𝑟 = min(𝑟, 𝜎) and 𝑠 = min(𝑠, 𝜎). Hence, we have reduced this case to the previous

case and find that the right hand side of (5.30) decays at a rate of

𝜌(𝜎) = min(min(𝑟, 𝜎),min(𝑠, 𝜎) − 𝜎/2, 𝜎) = min(𝑟,min(𝑠, 𝜎) − 𝜎/2)
= min(𝑟,min(𝑠 − 𝜎/2, 𝜎/2)) = min(𝑟, 𝑠 − 𝜎/2, 𝜎/2).(5.32)

This function is maximized at 𝜎∗ = 𝑠 with a value of 𝜌∗ = min (𝑠/2, 𝑟). Like before, we can

without loss of generality assume that 𝑠 ≥ 𝑟.
Remark 5.37. Note that in general the decay rate 𝜌∗ = min (𝑠/2, 𝑟)of the upper bound (5.29)

can be smaller than the approximation rate 𝑟. This is in contrast to problems with non-

essential boundary values for which the error decays proportional to the approximation

error by Cea’s lemma. We stress that the defect in the decay rate of the right hand side

of (5.29) is not an artefact of our computations but in fact sharp.

Let us now come back to the original problem of the Dirichlet problem (5.20). For a

right hand side 𝑓 ∈ 𝐻𝑟(Ω), standard regularity results yield 𝑢∗ ∈ 𝐻𝑟+2(Ω). Theorem 5.11

provides rates for the approximation in 𝐻𝑠(Ω) for 𝑠 ∈ [0, 1], which lead to the following

result.

Theorem 5.38 (Rates for NN training with boundary penalty). Let Ω ⊂ R𝑑 be a bounded
domain with 𝐶𝑟+1,1 boundary for some 𝑟 ∈ N, 𝑓 ∈ 𝐻𝑟(Ω) and assume 𝐴 ∈ 𝐶𝑟,1(Ω,R𝑑×𝑑) is
symmetric, uniformly elliptic with ellipticity constant 𝛼 > 0 and denote the solution to (5.20) by
𝑢∗ ∈ 𝐻1

0
(Ω). For every 𝑛 ∈ N, there is a ReLU network with parameter space Θ𝑛 of dimension

𝒪(log
2

2
(𝑛(𝑟+2)/𝑑) · 𝑛) such that if 𝜆𝑛 ∼ 𝑛𝜎 for 𝜎 = 2𝑟+3

2𝑑
one has for any 𝜌 < 2𝑟+3

4𝑑
that

(5.33) ∥𝑢𝜃𝑛 − 𝑢∗∥𝐻1(Ω) ≾
√
𝛿𝑛 + 𝑛−2𝜌 + 𝑛−𝜌 for all 𝜃𝑛 ∈ Θ𝑛 ,

where 𝛿𝑛 = 𝐸𝜆𝑛 (𝑢𝜃𝑛 ) − inf�̃�∈Θ𝑛
𝐸𝜆𝑛 (𝑢�̃�).
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Proof. For 𝜀 > 0 it holds that 𝐻1/2+𝜀(Ω) ↩→ 𝐿2(𝜕Ω). Thus, Theorem 5.11 guarantees

the existence of 𝑢𝜃𝑛 with 𝜃𝑛 ∈ Θ𝑛 and the claimed number of parameters such that

∥𝑢𝜃𝑛 − 𝑢∗∥𝐻1(Ω) ≾ 𝑛
−(𝑟+1)/𝑑 = 𝑛−𝑟 and

∥𝑢𝜃𝑛 − 𝑢∗∥𝐿2(𝜕Ω) ≾ ∥𝑢𝜃𝑛 − 𝑢∗∥𝐻1/2+𝜀(Ω) ≾ 𝑛
−(𝑟+2−(1/2+𝜀))/𝑑 = 𝑛−𝑠 ,

where 𝑠 = (2𝑟 + 3 − 2𝜀)/(2𝑑). By (5.32), the estimate (5.33) holds for

𝜌 = min(𝑟, 𝑠 − 𝜎/2, 𝜎/2) = min

(
𝑟 + 1

𝑑
,

2𝑟 + 3 − 4𝜀
4𝑑

,
2𝑟 + 3

4𝑑

)
=

2𝑟 + 3 − 4𝜀
4𝑑

.

□

Remark 5.39 (Adaptation to Smoothness). The discussion from Remark 5.26 carries over

to the case of Dirichlet boundary values and boundary penalties, i.e., the error of the deep

Ritz method decays at a rate increasing with the smoothness of the problem. This fact

can be especially useful in high spatial dimensions, which is consistent with the empirical

findings that the deep Ritz method can be effective in the numerical solution of high

dimensional problems [110]. Note that also finite element methods can achieve rates

increasing with the smoothness of data, however they require the delicate construction

of higher order elements.

Remark 5.40 (Combination with different approximation results). We focus on the ReLU

activation in this section, whereas in practice often other architectures and activation

functions are used, see [110, 132]. However, our results from Section 3 can handle arbitrary

function classes and hence reduce the computation of error estimates to the computation

of approximation bounds. Therefore, they can be combined with other approximation

results for neural networks in Sobolev norm including the works of [127, 306, 262, 138,

106, 88].

Remark 5.41 (The boundary penalty method for FEM). The boundary penalty method has

been applied in the context of finite element approximations [27] and studied in terms of

its convergence rates in [27, 258, 34]. The idea of the finite element approach is analogue

to the idea of using neural networks for the approximate solution of variational problems.

However, one constructs a nested sequence of finite dimensional vector spaces𝑉ℎ ⊆ 𝐻1(Ω)
arising from some triangulation with fineness ℎ > 0 and computes the minimizer 𝑢ℎ of

the penalized energy 𝐸𝜆 over 𝑉ℎ . Choosing a suitable triangulation and piecewise affine

linear elements and setting 𝜆 ∼ ℎ−1
one obtains the error estimate

∥𝑢ℎ − 𝑢∗∥𝐻1(Ω) ≾ ℎ,

see [258]. At the core of those estimates lies a linear version of Céa’s Lemma, which already

incorporates boundary values. However, the proof of this lemma heavily relies on the fact

that the class of ansatz functions is linear and that its minimizer solves a linear equation.

This is not the case for non linear function classes like neural networks. Therefore, our

estimates require a different strategy. However, the optimal rate of convergence for the

boundary penalty method with finite elements can be deduced from our results. In fact,

one can choose a suitable triangulation and an operator 𝑟ℎ : 𝐻2(Ω) → 𝑉ℎ such that

∥𝑟ℎ𝑢 − 𝑢∥𝐻1(Ω) ≾ ℎ∥𝑢∥𝐻2(Ω) ,

where the approximating functions 𝑢ℎ have zero boundary values as they arise from inter-

polation. By the general discussion from above for the ansatz classes with approximation
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rates with exact zero boundary values, choosing 𝜆 ≿ ℎ−1
yields an error bound decaying

like the approximation error ∥𝑢ℎ − 𝑢∗∥𝐻1(Ω) ≾ ℎ.

5.5 Proofs regarding the implications of exact boundary values in
residual minimization

In this section we show the theoretical benefits of using neural network type ansatz

functions that satisfy Dirichlet boundary conditions exactly in the residual minimization

method for the Poisson problem

−Δ𝑢 = 𝑓 in Ω

𝑢 = 𝑔 on 𝜕Ω,
(5.34)

where 𝑓 ∈ 𝐿2(Ω) and 𝑔 ∈ 𝐻3/2(𝜕Ω). We see that the exact boundary conditions improve

the mode of convergence from 𝐻1/2
to 𝐻2

. Although being formulated for the Laplace

operator, those results hold for any elliptic operator, which is 𝐻2
regular.

5.5.1. 𝐻2 estimates for residual minimization with exact boundary values. We start

by considering the case of exact boundary conditions and present two main results, one

that allows to quantify the 𝐻2
error using the value of the loss function and the other, an

estimate based on Céa’s Lemma that allows to link the approximation capabilities of the

network class to the error made by residual minimization.

Setting 5.42. We consider again (5.34), in particular, we assume that the problem is 𝐻2 regular
meaning that there is a constant 𝐶reg > 0, satisfying

∥𝑢∥𝐻2(Ω) ≤ 𝐶reg∥Δ𝑢∥𝐿2(Ω) for all 𝑢 ∈ 𝐻2(Ω) ∩ 𝐻1

0
(Ω).

Furthermore, we assume that Θ is a parameter set of a neural network type ansatz class, such
that for every 𝜃 ∈ Θ we have 𝑢𝜃 ∈ 𝐻2(Ω) and (𝑢𝜃)|𝜕Ω = 𝑔. As our strategy is to minimize the
residual we define the loss function

ℒ : Θ→ R, ℒ(𝜃) = ∥Δ𝑢𝜃 + 𝑓 ∥2𝐿2(Ω).

Remark 5.43. Setting 5.42 is for example satisfied when 𝜕Ω ∈ 𝐶1,1
, 𝑓 ∈ 𝐿2(Ω). Alter-

natively, one can replace the assumption 𝜕Ω ∈ 𝐶1,1
by requiring that the domain Ω is

convex. We refer to [124] for a detailed discussion of the regularity properties of elliptic

equations.

The following result is a trivial corollary of the𝐻2
regularity we assumed and a similar

result is due to [283], although not exploiting the benefits of exact boundary conditions.

Albeit being of simple nature, we believe it can be of practical relevance due to its easy

and explicit error control.

Theorem 5.44. Assume we are in the situation of Setting 5.42, then it holds for every 𝜃 ∈ Θ that

∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻2(Ω) ≤ 𝐶reg
√
ℒ(𝜃).

For convex domains, we may estimate the regularity constant explicitely. It holds

𝐶reg ≤
√

1 + 𝐶𝑃 ≤

√√
1 +

(
|Ω|
𝜔𝑑

) 1

𝑑

,
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where 𝑑 is the dimension of Ω, 𝜔𝑑 denotes the volume of the unit ball in R𝑑 and 𝐶𝑃 is the Poincaré
constant for functions in 𝐻1

0
(Ω).

Proof. The difference 𝑢𝜃 − 𝑢 𝑓 lies in 𝐻2(Ω) ∩ 𝐻1

0
(Ω) and solves −Δ(𝑢 𝑓 − 𝑢𝜃) = Δ𝑢𝜃 + 𝑓 .

The 𝐻2(Ω) regularity theory then implies the desired estimate. Let us now assume that

Ω is convex and derive the explicit estimate on 𝐶reg. We expand the 𝐻2(Ω) norm of

𝑢 𝑓 ∈ 𝐻2(Ω) ∩ 𝐻1

0
(Ω)

∥𝑢 𝑓 ∥2𝐻2(Ω) = ∥𝑢 𝑓 ∥
2

𝐿2(Ω) + ∥∇𝑢 𝑓 ∥
2

𝐿2(Ω) + ∥𝐷
2𝑢 𝑓 ∥2𝐿2(Ω)

Due to the zero boundary values and the convexity of Ω we have

∥𝐷2𝑢∥2
𝐿2(Ω) = ∥Δ𝑢∥

2

𝐿2(Ω) = ∥ 𝑓 ∥
2

𝐿2(Ω)

and we refer the reader to [124] for details. The first two terms can be estimated jointly

using the a priori estimates of the Lax-Milgram Theorem, this yields

∥𝑢∥2
𝐿2(Ω) + ∥∇𝑢∥

2

𝐿2(Ω) ≤ 𝐶
2

𝑃 ∥ 𝑓 ∥
2

𝐻1

0
(Ω)∗ ≤ 𝐶

2

𝑃 ∥ 𝑓 ∥
2

𝐿2(Ω).

This is due to the fact that 𝐶−1

𝑃
is the coercivity constant of the Dirichlet Laplacian bilinear

form, see [112]. The explicit estimate of the Poincaré constant 𝐶𝑃 can be found in [151]. □

Remark 5.45. Some remarks are in order.

(i) The zero boundary conditions are essential. If one instead resorts to a 𝐿2(𝜕Ω)
penalty of the boundary values the best convergence one can hope for is𝐻1/2(Ω).
We elaborate this in Section 5.5.2.

(ii) The theorem allows to compute an explicit upper bound on the error made by

residual minimization, once the training returns a parameter 𝜃 via computing

the (continuous) loss. In particular, no access to the solution 𝑢 𝑓 is required. This

means that if boundary conditions are encoded in the ansatz functions, the loss

itself is a consistent a posteriori error estimator for the residual minimization

method.

(iii) The root in the estimate above does not indicate a slow convergence. In fact, the

loss itself is a squared 𝐿2(Ω) norm and the root accounts for that.

The next theorem allows to quantify the error made by the residual minimization

method using the optimization quality and the expressiveness of the ansatz class. It is an

application of the non-linear Céa Lemma as formulated by [213].

Theorem 5.46. Assume we are in Setting 5.42, then for any 𝜃 ∈ Θ it holds
(5.35)

∥𝑢 𝑓 − 𝑢𝜃∥𝐻2(Ω) ≤
√
𝐶2

reg𝛿 + 𝐶2

reg inf

�̃�∈Θ
∥Δ(𝑢�̃� − 𝑢 𝑓 )∥2𝐿2(Ω) ≤

√
𝐶2

reg𝛿 + 𝐶2

reg inf

�̃�∈Θ
∥𝑢�̃� − 𝑢 𝑓 ∥2𝐻2(Ω) ,

where 𝛿 = ℒ(𝜃) − inf�̃�∈Θ ℒ(�̃�).
Proof. We define the energy

𝐸 : 𝐻2(Ω) → R, 𝐸(𝑢) = ∥Δ𝑢 + 𝑓 ∥2
𝐿2(Ω).
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Note that 𝐸 is defined on a different domain than the loss function ℒ, which is why we

reserve an own symbol for it. The energy 𝐸 is a quadratic energy

∥Δ𝑢 + 𝑓 ∥2
𝐿2(Ω) =

∫
Ω

(Δ𝑢)2d𝑥 + 2

∫
Ω

𝑓Δ𝑢d𝑥 +
∫
Ω

𝑓 2

d𝑥

=
1

2

𝑎(𝑢, 𝑢) − 𝐹(𝑢) + 𝑐,

where the bilinear form 𝑎 : 𝐻2(Ω) × 𝐻2(Ω) → R, the functional 𝐹 ∈ 𝐻2(Ω)∗ and the

constant 𝑐 are given by

𝑎(𝑢, 𝑣) = 2

∫
Ω

Δ𝑢Δ𝑣d𝑥, 𝐹(𝑢) = 2

∫
Ω

𝑓 (−Δ𝑢)d𝑥, 𝑐 =

∫
Ω

𝑓 2

d𝑥.

The unique minimizer of 𝐸 in the affine subspace 𝐻2(Ω) ∩𝐻1

𝑔(Ω) is precisely the solution

𝑢 𝑓 to the Poisson problem (5.34). The bilinear form 𝑎 is coercive on the subspace 𝐻2(Ω) ∩
𝐻1

0
(Ω), which follows from elliptic regularity theory, see for instance [124]. This allows

to exploit a Céa Lemma for non-linear ansatz spaces, as described in [213, in Proposition

3.1]. To transfer this to the affine space 𝐻2(Ω) ∩ 𝐻1

𝑔(Ω) we choose 𝑢𝑔 ∈ 𝐻2(Ω) such that

−Δ𝑢𝑔 = 0 and (𝑢𝑔)|𝜕Ω = 𝑔. For an arbitrary 𝑢𝜃 we then expand

∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻2(Ω) = ∥(𝑢𝜃 − 𝑢𝑔) − (𝑢 𝑓 − 𝑢𝑔)∥𝐻2(Ω).

Now note that 𝑢 𝑓 − 𝑢𝑔 solves −Δ(𝑢 𝑓 − 𝑢𝑔) = 𝑓 with zero boundary values, hence 𝑢 𝑓 − 𝑢𝑔
is the unique minimizer of 𝐸 over the subspace 𝐻2(Ω) ∩ 𝐻1

0
(Ω) and we can apply Céa’s

Lemma with the ansatz set {𝑢𝜃 − 𝑢𝑔 : 𝜃 ∈ Θ}

∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻2(Ω) ≤
√

2𝛿
𝛼
+ 1

𝛼
inf

�̃�∈Θ
∥𝑢�̃� − 𝑢 𝑓 ∥2𝑎 ,

where ∥·∥𝑎 denotes the norm induced by 𝑎. Using that the coercivity constant 𝛼 of 𝑎 is

2/𝐶2

reg
and the norm ∥·∥𝑎 = 2∥Δ·∥𝐿2(Ω) we conclude. □

Remark 5.47 (General Elliptic Equations). The discussion of this chapter can be extended

to more general elliptic equations. For coefficients 𝐴 ∈ 𝐶0,1(Ω,R𝑑×𝑑), a right-hand side

𝑓 ∈ 𝐿2(Ω) and boundary values 𝑔 ∈ 𝐻3/2(𝜕Ω) consider the equation

−div (𝐴∇𝑢) = 𝑓 in Ω,

𝑢 = 𝑔 on 𝜕Ω.

If we assume that 𝜕Ω ∈ 𝐶1,1
(or that Ω is convex) and the coefficients are uniformly

elliptic, i.e., for a constant 𝑐𝐴 > 0 satisfy 𝐴(𝑥)𝜉 · 𝜉 ≥ 𝑐𝐴 |𝜉|2 uniformly in 𝑥 ∈ Ω and 𝜉 ∈ R𝑑,
the problem admits a unique solution 𝑢 𝑓 ∈ 𝐻2(Ω) and we can estimate

∥𝑢 𝑓 ∥𝐻2(Ω) ≤ 𝑐reg

(
∥ 𝑓 ∥𝐿2(Ω) + ∥𝑔∥𝐻3/2(𝜕Ω)

)
.

Arguing as in the proof of Theorem 5.44 we obtain

∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻2(Ω) ≤ 𝑐reg

√
ℒ(𝜃).

Similarly, Theorem 5.46 can be transferred to this setting.
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5.5.2. Failure without exact boundary values. In this section we show that not enforc-

ing exact boundary values in the neural network ansatz functions leads to considerably

weaker error estimates. Throughout this subsection, we work under the following as-

sumptions.

Setting 5.48. We consider again (5.34). We assume that Θ is a parameter set of a neural network
type ansatz class, such that for every 𝜃 ∈ Θ we have 𝑢𝜃 ∈ 𝐻2(Ω), but make no assumptions on
its boundary values. As our strategy is to minimize the residual we define the loss function with
boundary penalty

ℒ𝜏 : Θ→ R, ℒ𝜏(𝜃) = ∥Δ𝑢𝜃 + 𝑓 ∥2𝐿2(Ω) + 𝜏∥𝑢𝜃 − 𝑔∥2𝐿2(𝜕Ω) ,

where 𝜏 ∈ (0,∞) is a positive penalization parameter.
Without exact boundary values, the penalization of the deviations of the boundary

values is required in order to enforce them approximately. Note that if 𝑢𝜃 has exact

boundary values, it holds that ℒ𝜏(𝜃) = ℒ(𝜃). With the penalization introduced above,

we obtain a similar result to Theorem 5.44 but only with respect to the weaker𝐻1/2
-norm,

which is to the estimate by [261] is sharp. However, we sharpen this result by showing

that 1/2 is the largest exponent for which such an estimate can hold in general.

Theorem 5.49. Assume that we are in Setting 5.48 and that the domain Ω ⊆ R𝑑 has a smooth
boundary 𝜕Ω ∈ 𝐶∞. Then for 𝑠 ∈ R there is a constant 𝑐 > 0 such that

(5.36) ∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻𝑠 (Ω) ≤ 𝑐
√
ℒ𝜏(𝜃) for all 𝜃 ∈ Θ

and all parametric classes and data 𝑓 ∈ 𝐿2(Ω), 𝑔 ∈ 𝐻3/2(𝜕Ω) if and only if 𝑠 ≤ 1/2.
Proof. First, we show that the estimate holds for 𝑠 ≤ 1/2, where it suffices to show it for

𝑠 = 1/2. For this, we use the estimate

(5.37) ∥𝑢∥𝐻𝑠 (Ω) ≤ 𝑐
(
∥−Δ𝑢∥𝐻𝑠−2(Ω) + ∥𝑢∥𝐻𝑠−1/2(𝜕Ω)

)
,

for all 𝑢 ∈ 𝐶∞(Ω) and 𝑠 ∈ R, see Theorem 2.1 in [247] or Lemma 6.2 in [261]. Setting

𝑠 = 1/2 and noting that it extends to functions 𝑢 ∈ 𝐻2(Ω) yields

∥𝑢∥𝐻1/2(Ω) ≤ 𝑐
(
∥Δ𝑢∥𝐻−3/2(Ω) + ∥𝑢∥𝐿2(𝜕Ω)

)
≤ 𝑐

(
∥Δ𝑢∥𝐿2(Ω) + ∥𝑢∥𝐿2(𝜕Ω)

)
.

Setting 𝑢 B 𝑢𝜃 − 𝑢 𝑓 yields

∥𝑢𝜃 − 𝑢 𝑓 ∥𝐻1/2(Ω) ≤ (1 + 𝜏−1/2)𝑐
√
ℒ𝜏(𝜃).

To show that the estimate (5.36) can not in general be established for any stronger

norms, we assume that it holds for some 𝑠 ∈ R. As in the proof of Theorem 5.46 we define

the energy, this time penalising boundary values

𝐸𝜏 : 𝐻2(Ω) → R, 𝐸𝜏(𝑢) B ∥Δ𝑢 + 𝑓 ∥2𝐿2(Ω) + 𝜏∥𝑢 − 𝑔∥2
𝐿2(𝜕Ω).

If the estimate (5.36) holds for general parametric classes, this yields

∥𝑣 − 𝑢 𝑓 ∥2𝐻𝑠 (Ω) ≤ 𝑐 · 𝐸𝜏(𝑣) for all 𝑣 ∈ 𝐻2(Ω), 𝑓 ∈ 𝐿2(Ω), 𝑔 ∈ 𝐻3/2(𝜕Ω).

Choosing 𝑓 = 0 and 𝑔 = 0 yields

∥𝑣∥2
𝐻𝑠 (Ω) ≤ 𝑐 · 𝐸𝜏(𝑣) = 𝑐 ·

(
∥Δ𝑣∥2

𝐿2(Ω) + 𝜏∥𝑣∥2
𝐿2(𝜕Ω)

)
for all 𝑣 ∈ 𝐻2(Ω).
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For ℎ ∈ 𝐻3/2(𝜕Ω) let 𝑢ℎ ∈ 𝐻2(Ω) denote the unique harmonic extension, i.e., the solution

of

−Δ𝑢ℎ = 0 in Ω

𝑢ℎ = ℎ on 𝜕Ω.

Now we have

(5.38) ∥ℎ∥2
𝐻𝑠−1/2(𝜕Ω) ≤ 𝑐∥𝑢ℎ ∥

2

𝐻𝑠 (Ω) ≤ 𝑐
(
∥Δ𝑢ℎ ∥2𝐿2(Ω) + 𝜏∥𝑢ℎ ∥2𝐿2(𝜕Ω)

)
= 𝑐𝜏 · ∥ℎ∥2

𝐿2(𝜕Ω)

for all ℎ ∈ 𝐻3/2(𝜕Ω). In order to see that this implies 𝑠 ≤ 1/2 we assume the contrary

and set 𝜀 B 𝑠 − 1/2 > 0. Then, the embedding 𝐻3/2(𝜕Ω) ↩→ 𝐻𝜀(𝜕Ω) is dense and

hence (5.38) extends to ℎ ∈ 𝐻𝜀(𝜕Ω). This yields that all norms ∥·∥𝐻𝛿(𝜕Ω) for 𝛿 ∈ (0, 𝜀) are

equivalent to ∥·∥𝐿2(𝜕Ω), which implies that all spaces 𝐻𝛿(𝜕Ω) agree, which constitutes a

contradiction. □

Remark 5.50 (Stronger estimates through stronger penalty). We have seen that the 𝐿2(𝜕Ω)
penalization can not lead to estimates in a stronger Sobolev norm than𝐻1/2(Ω). However,

inspecting inequality (5.37) one could – at least in theory – penalize the boundary values

in the 𝐻3/2(𝜕Ω) norm and would then obtain 𝐻2(Ω) estimates. As the 𝐻3/2(𝜕Ω) norm is

difficult to approximate in practice, this is no feasible numerical approach.

Remark 5.51 (Stronger estimates through interpolation). It is possible to bound the 𝐻𝑠

error for 𝑠 ≥ 1/2 of residual minimization with 𝐿2
boundary penalty for the expense of

worse rates and under the cost of an additional factor for which it is not clear whether it is

bounded. Similar to [53] one can use an interpolation inequality for 𝑠 ∈ [1/2, 2] to obtain

∥𝑢∥𝐻𝑠 (Ω) ≤ ∥𝑢∥2(2−𝑠)/3𝐻1/2(Ω) · ∥𝑢∥
(2𝑠−1)/3
𝐻2(Ω) for all 𝑢 ∈ 𝐻2(Ω).

Together with the a posteriori estimate on the 𝐻1/2
norm, this yields

∥𝑢 𝑓 − 𝑢𝜃∥𝐻𝑠 (Ω) ≤ ∥𝑢 𝑓 − 𝑢𝜃∥2(2−𝑠)/3𝐻1/2(Ω) · ∥𝑢 𝑓 − 𝑢𝜃∥
(2𝑠−1)/3
𝐻2(Ω) ≾ ∥𝑢 𝑓 − 𝑢𝜃∥

(2𝑠−1)/3
𝐻2(Ω) · 𝐿(𝜃)

(2−𝑠)/3

≤
(
∥𝑢 𝑓 ∥𝐻2(Ω) + ∥𝑢𝜃∥𝐻2(Ω)

) (2𝑠−1)/3 · 𝐿(𝜃)(2−𝑠)/3.

Hence, if it is possible to control the 𝐻2
norm of the neural network functions, one

obtains an a posteriori estimate on the 𝐻𝑠
error. Note however, that the 𝐻2

norm of the

neural networks functions is not controlled through the loss function 𝐿 and hence, this

estimates requires an additional explicit or implicit control on the 𝐻2
norm in order to be

informative. Note, however, that the power of the a posteriori estimate decreases towards

zero for 𝑠 → 2 and the estimate collapses to a trivial bound for 𝑠 = 2.

5.5.3. Higher order Sobolev norms as a residual measurement. We discuss the

potential benefit of using (higher order) Sobolev norms to measure the residual, as was

already proposed by [271]. We are again supposing the exact enforcement of boundary

conditions. Our precise setting is the following.

Setting 5.52. Let 𝑝 ∈ (1,∞) and 𝑘 ≥ 0 be fixed. Assume that Ω ⊆ R𝑑 is a bounded, open domain
with 𝐶𝑘+1,1 boundary and let 𝑓 ∈ 𝑊 𝑘,𝑝(Ω) and 𝑔 ∈ 𝑊2+𝑘−1/𝑝,𝑝(𝜕Ω). Denote by 𝑢 𝑓 the solution
to (5.34). Furthermore, let Θ be a parameter set of a neural network class, such that for every
𝜃 ∈ Θ we have 𝑢𝜃 ∈𝑊 𝑘+2,𝑝(Ω) and 𝑢 |𝜕Ω = 𝑔. We define the loss function

(5.39) ℒ : Θ→ R, ℒ(𝜃) = ∥Δ𝑢𝜃 + 𝑓 ∥𝑝
𝑊 𝑘,𝑝(Ω).
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In total analogy to Theorem 5.44 we obtain the following result.

Theorem 5.53. Assume we are in the situation of Setting 5.52, then it holds for every 𝜃 ∈ Θ that

∥𝑢𝜃 − 𝑢 𝑓 ∥𝑊 𝑘+2,𝑝(Ω) ≤ 𝐶reg(𝑝, 𝑘) 𝑝
√
ℒ(𝜃).

Proof. The essential ingredient is the 𝐿𝑝 regularity theory that holds under the assump-

tions made in Setting 5.52, see for instance chapter 2.5 in [124]. The relevant result is

that

−Δ : 𝑊 𝑘+2,𝑝(Ω) ∩𝑊1,𝑝

0
(Ω) →𝑊 𝑘,𝑝(Ω)

is a linear homeomorphism, where 𝐶reg(𝑝, 𝑘) denotes the operator norm of its inverse. □

Remark 5.54. The above result might be interesting if approximation of higher derivatives

is desired. Furthermore, the empirical findings of [271] suggest that measuring the

residual in a Sobolev norm might lead to fewer iterations in a gradient based optimization

routine.

5.5.4. Estimates for parabolic equations. The same observation made for the Poisson

equation can be exploited for linear parabolic equations when both initial and boundary

values are satisfied exactly by the ansatz class. Here, the key is maximal parabolic 𝐿2

regularity theory. We begin by describing our setting.

Setting 5.55. We consider again a domain Ω ⊆ R𝑑 that is 𝐻2 regular for the Laplacian and a
finite time interval 𝐼 = [0, 𝑇]. For 𝑓 ∈ 𝐿2(𝐼 , 𝐿2(Ω)), 𝑔 ∈ 𝐻3/2(𝜕Ω) and 𝑢0 ∈ 𝐻1

0
(Ω) we consider

the parabolic problem
𝑑𝑡𝑢 − Δ𝑢 = 𝑓 in 𝐼 ×Ω
𝑢(𝑡)|𝜕Ω = 𝑔 for all 𝑡 ∈ 𝐼
𝑢(0) = 𝑢0.

(5.40)

Let Θ be a parameter set of a neural network class such that for every 𝜃 ∈ Θ the function 𝑢𝜃 is a
member of the space

𝒳 = 𝐻1(𝐼 , 𝐿2(Ω)) ∩ 𝐿2(𝐼 , 𝐻2(Ω) ∩ 𝐻1

𝑔(Ω)), ∥𝑢∥𝒳 = ∥𝑑𝑡𝑢∥𝐿2(𝐼 ,𝐿2(Ω)) + ∥𝑢∥𝐿2(𝐼 ,𝐻2(Ω))

with 𝑢𝜃(0) = 𝑢0. This means that both initial and boundary conditions are satisfied exactly. For
an introduction to vector-valued Sobolev spaces we refer the reader to [59]. Then we define the loss
function

ℒ(𝜃) = ∥𝑑𝑡𝑢𝜃 − Δ𝑢𝜃 − 𝑓 ∥2𝐿2(𝐼 ,𝐿2(Ω))
The following theorem is analogue to the case of the Laplacian and relies on a parabolic

regularity result.

Theorem 5.56. Assume xwe are in Setting 5.55. Then it holds for all 𝜃 ∈ Θ that

∥𝑢𝜃 − 𝑢 𝑓 ∥𝒳 ≤ 𝐶
√
ℒ(𝜃)

Proof. We denote by 𝐻1

0
(𝐼 , 𝐿2(Ω)) the vector-valued Sobolev space with vanishing initial

values. Maximal parabolic 𝐿2(Ω) regularity theory tells us that

𝑑𝑡 − Δ : 𝐻1

0
(𝐼 , 𝐿2(Ω)) ∩ 𝐿2(𝐼 , 𝐻2(Ω) ∩ 𝐻1

0
(Ω)) −→ 𝐿2(𝐼 , 𝐿2(Ω))

is a linear homeomorphism and this implies the assertion, see for instance [19] for more

information on maximal parabolic regularity. The constant 𝐶 is then the operator norm

of (𝑑𝑡 − Δ)−1
. □
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Remark 5.57. Of course this result is not limited to the heat equation. Indeed one can

replace −Δ by a self-adjoint, coercive operator that satisfies 𝐻2(Ω) regularity, we refer

the reader again to [19] for the corresponding regularity theory. For information on the

dependency of the constant 𝐶 on data, we refer to [12], especially Theorem 4.10.8.

Remark 5.58. [202] report error estimates for parabolic equations not enforcing initial and

boundary conditions in the ansatz architecture. We stress that even though the solutions

there are assumed to be classical, smooth solutions the error is only estimated in the

𝐿2(𝐼 ×Ω) norm, which is weaker than the estimates presented here. This is again due to

advantage of exact boundary and initial conditions.
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CHAPTER 6

Energy natural gradients for neural network based PDE solvers

Neural network based PDE solvers have recently experienced an enormous growth

in popularity and attention within the scientific community following the works of [109,

129, 269, 110, 237, 176]. Like in Chapter 5 we focus on methods, which parametrize the

solution of the PDE by a neural network and use a formulation of the PDE in terms of a

minimization problem to construct a loss function used to train the network. The works

following this ansatz can be divided into the two approaches: (a) residual minimization

of the PDEs residual in strong form, this is known under the name physics informed neural
networks or deep Galerkin method, see for example [100, 164, 269, 237]; (b) if existent,

leveraging the variational formulation to obtain a loss function, this is known as the deep
Ritz method [110], see also [43, 295] for in depth reviews of these methods.

One central reason for the rapid development of these methods is their mesh free

nature, which allows easy incorporation of data and their promise to be effective in high-

dimensional and parametric problems, that render mesh-based approaches infeasible.

Nevertheless, in practice when these approaches are tackled directly with well established

optimizers like GD, SGD, Adam or (quasi-)Newton methods, they often fail to produce

accurate solutions even for problems of small size. This phenomenon is increasingly well

documented in the literature where it is attributed to an insufficient optimization leading

to a variety of optimization procedures being suggested, where accuracy better than in

the order of 10
−3

relative 𝐿2
error can rarely be achieved [264, 292, 293, 161, 84, 314].

The only exceptions are ansatzes, which are conceptionally different from direct gradient

based optimization, more precisely greedy algorithms and a reformulation as a min-max

game [264, 314].

Contributions. We provide a simple, yet effective optimization method that achieves

high accuracy for a range of PDEs when combined with the PINN ansatz. Although we

evaluate the approach on PDE related tasks, it can be applied to a wide variety of training

problems. Our main contributions can be summarized as follows:

• We introduce the notion of energy natural gradients. This natural gradient is

defined via the Hessian of the training objective in function space, see Defini-

tion 6.1. When the same discretization of the function space is used for both the

computation of the objective and the natural gradient then the energy natural

gradient can be interpreted as a generalized Gauss-Newton method.

• We show that an energy natural gradient update in parameter space corresponds

to a Newton update in function space. In particular, for quadratic energies the

function space update approximately moves into the direction of the error 𝑢∗−𝑢𝜃,

see Theorem 6.2.
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• We demonstrate the capabilities of the energy natural gradient combined with

a simple line search to achieve an accuracy, which is several orders of mag-

nitude higher compared to standard optimizers like GD, Adam and Newton’s

method. These examples include PINN formulations of stationary and evo-

lutionary PDEs as well as the deep Ritz formulation of a nonlinear ODE. The

numerical evaluation is contained in Section 6.2.

Related works. Here, we focus on improving the training process and thereby the

accuracy of PINNs. It has been documented in various works that direction optimization

of the parameters rarely achieves high accuracy [264, 292, 293, 161, 84, 314] with quasi-

Newton methods regarded as being among the most efficient optimizers [191, 52]. After

our work on energy natural gradients a Gauss-Newton method has been suggested and

theoretically analyzed for the deep Ritz method, however, without providing accuracy

greater than 10
−3

[130].

It has been observed that the magnitude of the gradient contributions from the PDE

residuum, the boundary terms and the initial conditions often possess imbalanced mag-

nitudes. To address this, different weighting strategies for the individual components of

the loss have been developed [292, 197, 293]. Albeit improving PINN training, non of the

mentioned works reports relative 𝐿2
errors below 10

−4
.

The choice of the collocation points in the discretization of PINN losses has been

investigated in a variety of works [183, 215, 85, 313, 291, 303]. Common in all these studies

is the observation that collocation points should be concentrated in regions of high PDE

residual and we refer to [85, 303] for an extensive comparisons of the different proposed

sampling strategies in the literature. Further, for time dependent problems curriculum

learning is reported to mitigate training pathologies associated with solving evolution

problems with a long time horizon [291, 161]. Again, while all aforementioned works

considerably improve PINN training, in non of the contributions errors below 10
−4

could

be achieved.

Different optimization strategies, which are conceptionally different to a direct gradient

based optimization of the objective, have been proposed in the context of PINNs. For

instance, greedy algorithms where used to incrementally build a shallow neural neuron

by neuron, which led to high accuracy, up to relative errors of 10
−8

, for a wide range of

PDEs [264]. However, the proposed greedy algorithms are only computationally tractable

for shallow neural networks. Another ansatz is to reformulate the quadratic PINN loss

as a saddle-point problem involving a network for the approximation of the solution and

a discriminator network that penalizes a non-zero residual. The resulting saddle-point

formulation cab be solved with competitive gradient descent [314] and the authors report

highly accurate – up to 10
−8

relative 𝐿2
error – PINN solutions for a number of example

problems. This approach however comes at the price of training two neural networks and

exchanging a minimization problem for a saddle-point problem. Finally, particle swarm

optimization methods have been proposed in the context of PINNs, where they improve

over the accuracy of standard optimizers, but fail to achieve accuracy better than 10
−3

despite their computation burden [84].

Natural gradient methods are an established optimization algorithm and we give an

overview in Section 6.1 and discuss here only works related to the numerical solution
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of PDEs. In fact, without explicitly referring to the natural gradient literature and ter-

minology, natural gradients are used in the PDE constrained optimization community

in the context of finite elements. For example, in certain situations the mass or stiffness

matrices can be interpreted as Gramians, showing that this ansatz is indeed a natural

gradient method. For explicit examples we refer to [252, 253]. In the context of neural

network based approaches, a variety of natural gradients induced by Sobolev, Fisher-Rao

and Wasserstein geometries have been proposed and tested for PINNs [223]. This work

focuses on the efficient implementation of these methods and does not consider energy

based natural gradients, which we find to be necessary in order to achieve high accuracy.

Notation. To keep this chapter self contained we present all notation used here.

We denote the space of functions on Ω ⊆ R𝑑 that are integrable in 𝑝-th power by 𝐿𝑝(Ω)
and endow it with its canonical norm.

For a sufficiently smooth function 𝑢 we denote its partial derivatives by 𝜕𝑖𝑢 = 𝜕𝑢/𝜕𝑥𝑖
and denote the tensor associated by the 𝑙-th derivative by (𝐷 𝑙𝑢)𝑖1 ,...,𝑖𝑙 B 𝜕𝑖1 . . . 𝜕𝑖𝑙𝑢. We

denote the gradient of a sufficiently smooth function 𝑢 by ∇𝑢 = (𝜕1𝑢, . . . , 𝜕𝑑𝑢)⊤ and the

Laplace operator Δ is defined by Δ𝑢 B
∑𝑑
𝑖=1

𝜕2

𝑖
𝑢.

We denote the Sobolev space of functions with weak derivatives up to order 𝑘 in 𝐿𝑝(Ω)
by𝑊 𝑘,𝑝(Ω), which is a Banach space with the norm

∥𝑢∥𝑝
𝑊 𝑘,𝑝(Ω) B

𝑘∑
𝑙=0

∥𝐷 𝑙𝑢∥𝑝
𝐿𝑝(Ω).

In the following we mostly work with the case 𝑝 = 2 and write 𝐻 𝑘(Ω) instead of𝑊 𝑘,2(Ω).
Consider natural numbers 𝑑, 𝑚, 𝐿, 𝑁0 , . . . , 𝑁𝐿 and let 𝜃 = ((𝐴1 , 𝑏1), . . . , (𝐴𝐿 , 𝑏𝐿)) be a

tuple of matrix-vector pairs where 𝐴𝑙 ∈ R𝑁𝑙×𝑁𝑙−1 , 𝑏𝑙 ∈ R𝑁𝑙 and 𝑁0 = 𝑑, 𝑁𝐿 = 𝑚. Every

matrix vector pair (𝐴𝑙 , 𝑏𝑙) induces an affine linear map𝑇𝑙 : R
𝑁𝑙−1 → R𝑁𝑙 . The neural network

function with parameters 𝜃 and with respect to some activation function 𝜌 : R → R is the

function

𝑢𝜃 : R𝑑 → R𝑚 , 𝑥 ↦→ 𝑇𝐿(𝜌(𝑇𝐿−1(𝜌(· · · 𝜌(𝑇1(𝑥)))))).
The number of parameters and the number of neurons of such a network is given by

∑𝐿−1

𝑙=0
(𝑛𝑙 +

1)𝑛𝑙+1. We call a network shallow if it has depth 2 and deep otherwise. In the remainder,

we restrict ourselves to the case 𝑚 = 1 since we only consider real valued functions.

Further, in our experiments we choose tanh as an activation function in order to assume

the required notion of smoothness of the network functions 𝑢𝜃 and the parametrization

𝜃 ↦→ 𝑢𝜃.

For 𝐴 ∈ R𝑛×𝑚 we denote any pseudo inverse of 𝐴 by 𝐴+.

6.1 Energy natural gradients

Before we introduce natural gradients and in particular energy natural gradients that arise

from the Hessian geometry in function space we provide a general setup for variational

problems that covers PINNs and the deep Ritz method.

6.1.1. Notation and setup. Various neural network based approaches for the approx-

imate solution of PDEs that cast the solution of the PDE as the minimizer of a typically
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convex energy over some function space and use this energy to optimize the networks

parameters have been suggested [43, 295, 160]. We present two prominent approaches

and introduce the unified setup that we use to treat both of these approaches later.

Physics-informed neural networks (PINNs). Consider a general partial differential

equation of the form

ℒ𝑢 = 𝑓 in Ω

ℬ𝑢 = 𝑔 on 𝜕Ω,
(6.1)

where Ω ⊆ R𝑑 is an open set, ℒ is a – possibly non-linear – partial differential operator

and ℬ is a boundary value operator. We assume that the solution 𝑢 is sought in a Hilbert

space 𝑋 and that the right-hand side 𝑓 and the boundary values 𝑔 are square integrable

functions on Ω and 𝜕Ω respectively. In this situation, we can reformulate (6.1) as an

minimization problem with objective function

(6.2) 𝐸(𝑢) =
∫
Ω

(ℒ𝑢 − 𝑓 )2d𝑥 + 𝜏

∫
𝜕Ω
(ℬ𝑢 − 𝑔)2d𝑠,

for a penalization parameter 𝜏 > 0. A function 𝑢 ∈ 𝑋 solves (6.1) if and only if 𝐸(𝑢) = 0. In

order to obtain an approximate solution, one can parametrize the function 𝑢𝜃 by a neural

network and minimize the network parameters 𝜃 ∈ R𝑝 according to the loss function

(6.3) 𝐿(𝜃) B
∫
Ω

(ℒ𝑢𝜃 − 𝑓 )2d𝑥 + 𝜏

∫
𝜕Ω
(ℬ𝑢𝜃 − 𝑔)2d𝑠.

This general approach to formulate equations as minimization problems is known as

residual minimization and in the context of neural networks for PDEs can be traced back

to [100, 164]. More recently, this ansatz was popularized under the names deep Galerkin
method or physics-informed neural networks, where the loss can also be augmented to en-

corporate a regression term steming from real world measurements of the solution [269,

237]. In practice, the integrals in the objective function have to be discretized in a suitable

way.

The deep Ritz method. When working with weak formulations of PDEs it is standard

to consider the variational formulation, i.e., to consider an energy functional such that

the Euler-Lagrange equations are the weak formulation of the PDE. This idea was already

exploited by Walter Ritz [242] to compute the coefficients of polynomial approximations

to solutions of PDEs and popularized in the context of neural networks in [110] who

coined the name deep Ritz method for this approach. For example for the Poisson equation

−Δ𝑢 = 𝑓 the variational energy is given by

𝑢 ↦→ 1

2

∫
Ω

|∇𝑢 |2d𝑥 −
∫
Ω

𝑓 𝑢d𝑥

compared to the residual energy (6.2). In particular, the energies require different smooth-

ness of the functions and are hence defined on different Sobolev spaces.

Incorporating essential boundary values in the Deep Ritz Method differs from the

PINN approach. Whereas in PINNs for any 𝜏 > 0 the unique minimizer of the energy is

the solution of the PDE, in the deep Ritz method the minimizer of the penalized energy

solves a Robin boundary value problem, which can be interpreted as a perturbed problem.
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In order to achieve a good approximation of the original problem the penalty parameters

need to be large, which leads to ill conditioned problems [213, 77].

General Setup. Both, physics informed neural networks as well as the deep Ritz

method fall in the general framework of minimizing an energy 𝐸 : 𝑋 → R xor more

precisely the associated objective function 𝐿(𝜃) B 𝐸(𝑢𝜃) over the parameter space of a

neural network. Here, we assume 𝑋 to be a Hilbert space of functions and the functions

𝑢𝜃 computed by the neural network with parameters 𝜃 to lie in 𝑋 and assume that

𝐸 admits a unique minimizer 𝑢★ ∈ 𝑋. Further, we assume that the parametrization

𝑃 : R𝑝 → 𝑋, 𝜃 ↦→ 𝑢𝜃 is differentiable and denote its range by ℱΘ = {𝑢𝜃 : 𝜃 ∈ R𝑝}. We

denote the generalized tangent space on this parametric model by

(6.4) 𝑇𝜃ℱΘ B span {𝜕𝜃𝑖𝑢𝜃 : 𝑖 = 1, . . . , 𝑝} .

6.1.2. Energy natural gradients and Newton’s method in function space. The con-

cept of natural gradients was popularized by Amari in the context of parameter estimation

in supervised learning and blind source separation [13]. The idea here is to modify the

update direction in a gradient based optimization scheme to emulate gradient in a suitable

representation space of the parameters. Whereas, this ansatz was already formulated for

general metrics it is usually attributed to the use of the Fisher metric on the representation

space, but also products of Fisher metrics, Wasserstein and Sobolev geometries have been

successfully used [153, 175, 223]. After the initial applications in supervised learning and

blind source separation, it was successfully adopted in reinforcement learning [153, 232,

28, 206], inverse problems [223], neural network training [249, 230, 192] and generative

models [257, 178]. One sublety in the natural gradients is the definition of a geometry

in the function space. This can either be done axiomatically or through the Hessian of a

potential function [15, 14, 290, 209]. We follow the idea to work with the natural gradient

induced by the Hessian of the convex function space objective in which the natural gradi-

ent can be interpreted as a generalized Gauss-Newton method, which has been suggested

for neural network training for supervised learning tasks [240, 66, 119, 192, 128]. Contrary

to existing works we encounter infinite dimensional and not strongly convex objective in

our applications. Further, we develop a function space perspective rescribing the function

space update directions as projections of the Newton update direction in function space

onto the tangent space of the model.

Here, we consider the setting of the minimization of a convex energy𝐸 : 𝑋 → Rdefined

on a Hilbert space 𝑋, which covers both physics informed neural networks and the deep

Ritz method. As an objective function for the optimization of the networks parameters

we use 𝐿(𝜃) = 𝐸(𝑢𝜃) like before. We define the energy Gram matrices by

(6.5) 𝐺𝐸(𝜃)𝑖 𝑗 B 𝐷2𝐸(𝑢𝜃)(𝜕𝜃𝑖𝑢𝜃 , 𝜕𝜃𝑗𝑢𝜃).
Definition 6.1 (Energy Natural Gradient). Consider the problem min𝜃∈R𝑝 𝐿(𝜃), where

𝐿(𝜃) = 𝐸(𝑢𝜃) and denote the Euclidean gradient by ∇𝐿(𝜃). Then we call

(6.6) ∇𝐸𝐿(𝜃) B 𝐺+𝐸(𝜃)∇𝐿(𝜃),
the energy natural gradient (E-NG)1.

1Note that this is different from the energetic natural gradients proposed in [279], which defines natural

gradients based on the energy distance rather than the Fisher metric.
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It is possible to choose other inner products in the function space 𝑋 for the definition

of the Gram matrix and hence the natural gradient. For example if 𝑋 = 𝐻𝑠(Ω) one can

use the Sobolev inner product to obtain a Gram matrix

𝐺𝑆(𝜃)𝑖 𝑗 B ⟨𝜕𝜃𝑖𝑢𝜃 , 𝜕𝜃𝑗𝑢𝜃⟨𝐻𝑠 (Ω)

as it was proposed in [223]. We refer to this approach as Hilbert or Sobolev natural

gradients.

For a linear PDE of the form (6.1) the residual yields a quadratic energy and the energy

Gram matrix takes the form

𝐺𝐸(𝜃)𝑖 𝑗 =
∫
Ω

ℒ(𝜕𝜃𝑖𝑢𝜃)ℒ(𝜕𝜃𝑗𝑢𝜃)d𝑥 + 𝜏

∫
𝜕Ω
ℬ(𝜕𝜃𝑖𝑢𝜃)ℬ(𝜕𝜃𝑗𝑢𝜃)d𝑠(6.7)

On the other hand, the deep Ritz method for a quadratic energy 𝐸(𝑢) = 1

2
𝑎(𝑢, 𝑢)− 𝑓 (𝑢),

where 𝑎 is a symmetric and coercive bilinear form and 𝑓 ∈ 𝑋∗ yields

(6.8) 𝐺𝐸(𝜃)𝑖 𝑗 = 𝑎(𝜕𝜃𝑖𝑢𝜃 , 𝜕𝜃𝑗𝑢𝜃).

For the energy natural gradient we have the following result relating energy natural

gradients to Newton updates.

Theorem 6.2 (Energy natural gradient in function space). If we assume that 𝐷2𝐸 is coercive
everywhere, then we have2

(6.9) 𝐷𝑃𝜃∇𝐸𝐿(𝜃) = Π
𝐷2𝐸(𝑢𝜃)
𝑇𝜃ℱΘ

(𝐷2𝐸(𝑢𝜃)−1∇𝐸(𝑢𝜃)).

Assume now that 𝐸 is a quadratic function with bounded and positive definite second derivative
𝐷2𝐸 = 𝑎 that admits a minimizer 𝑢∗ ∈ 𝑋. Then it holds that

(6.10) 𝐷𝑃𝜃∇𝐸𝐿(𝜃) = Π𝑎
𝑇𝜃ℱΘ (𝑢𝜃 − 𝑢

∗).

For the proof of this result we follow an analogue approach to [226], which addresses

finite dimensional spaces.

Lemma 6.3. Let 𝑋 be a vector space with a scalar product ⟨·, ·⟩ : 𝑋×𝑋 → R and consider a linear
map 𝐴 : R𝑝 → 𝑋 for some 𝑝 ∈ N. Let 𝐺 ∈ R𝑝×𝑝 be given by 𝐺𝑖 𝑗 B ⟨𝐴𝑒𝑖 , 𝐴𝑒 𝑗⟩ and consider the
adjoint operator 𝐴∗ : 𝑋 → R𝑝 given by

(6.11) 𝐴∗𝑦 B

𝑝∑
𝑖=1

⟨𝑦, 𝐴𝑒𝑖⟩𝑒𝑖 .

Then it holds that

(6.12) 𝐴𝐺+𝐴∗𝑥 = Π𝑅(𝐴)(𝑥),

where Π𝑅(𝐴)(𝑥) denotes the projection of 𝑥 onto the range 𝑅(𝐴) = {𝐴𝑣 : 𝑣 ∈ R𝑝} of 𝐴, which is
the unique element satisfying

(6.13) ⟨Π𝑅(𝐴)(𝑥), 𝑧⟩ = ⟨𝑥, 𝑧⟩ for all 𝑧 ∈ 𝑅(𝐴).

2Here, we interpret the bilinear form 𝐷2𝐸(𝑢𝜃) : 𝐻 × 𝐻 → R as an operator 𝐷2𝐸(𝑢𝜃) : 𝐻 → 𝐻; further

Π
𝐷2𝐸(𝑢𝜃)
𝑇𝜃ℱΘ

denotes the projection with respect to the inner product defined by 𝐷2𝐸(𝑢𝜃).
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Proof. It is elementary to check that the adjoint satisfies ⟨𝐴∗𝑥, 𝑣⟩ = ⟨𝑥, 𝐴𝑣⟩. Picking some

orthonormal basis (𝑏𝑖)𝑖=1,...,𝑑 of 𝑅(𝐴), the orthogonal projection of 𝑥 ∈ 𝑋 to 𝑅(𝐴) exists and

is given by

∑
𝑖 ⟨𝑥, 𝑏𝑖⟩𝑏𝑖 . Without loss of generality we can assume 𝑥 ∈ 𝑅(𝐴) and otherwise

replace 𝑥 by its projection onto 𝑅(𝐴) since 𝐴∗ vanishes on 𝑅(𝐴)⊥.

Let us use the notation 𝑣𝑖 B 𝐴𝑒𝑖 . Note that clearly 𝐴𝐺+𝐴∗𝑥 ∈ 𝑅(𝐴). Hence, it

remains to show that ⟨𝐴𝐺+𝐴∗𝑥, 𝑣𝑖⟩ = ⟨𝑥, 𝑣𝑖⟩ for all 𝑖 = 1, . . . , 𝑝. It holds that 𝐴∗𝑣𝑖 =∑
𝑗 ⟨𝐴𝑒𝑖 , 𝐴𝑒 𝑗⟩𝑒 𝑗 = 𝐺𝑒𝑖 and we can express 𝑥 =

∑
𝑖 𝑎𝑖𝑣𝑖 . Using the symmetry of 𝐺 we can

compute

⟨𝐴𝐺+𝐴∗𝑥, 𝑣𝑖⟩ = ⟨𝐺+𝐴∗𝑥, 𝐴∗𝑣𝑖⟩

=
∑
𝑗

𝑎 𝑗 ⟨𝐺+𝐴∗𝑣 𝑗 , 𝐺𝑒𝑖⟩

=
∑
𝑗

𝑎 𝑗 ⟨𝐺𝐺+𝐺𝑒 𝑗 , 𝑒𝑖⟩

=
∑
𝑗

𝑎 𝑗 ⟨𝐺𝑒 𝑗 , 𝑒𝑖⟩

=
∑
𝑗

𝑎 𝑗 ⟨𝐴∗𝑣 𝑗 , 𝑒𝑖⟩

=
∑
𝑗

𝑎 𝑗 ⟨𝑣 𝑗 , 𝐴𝑒𝑖⟩

= ⟨𝑥, 𝑣𝑖⟩,

(6.14)

which completes the proof. □

Theorem 6.4. Let (ℳ , 𝑔) be a Riemannian Hilbert manifold with model space 𝑋, where for
any 𝑥 ∈ ℳ the Riemannian metric 𝑔𝑥 defines a scalar product on the tangent space 𝑇𝑥ℳ �

𝑋 rendering 𝑇𝑥ℳ complete. Consider a differentiable objective function 𝐸 : ℳ → R and a
differentiable parametrization 𝑃 : R𝑝 →ℳ and define the Gram matrix in the usual way𝐺(𝜃)𝑖 𝑗 B
𝑔𝑃(𝜃)(𝜕𝜃𝑖𝑃(𝜃), 𝜕𝜃𝑗𝑃(𝜃)) and consider the objective function 𝐿 : R𝑝 → R given by 𝜃 ↦→ 𝐸(𝑢𝜃).
Then it holds that

𝐷𝑃𝜃𝐺(𝜃)+∇𝐿(𝜃) = Π𝑇𝜃𝑃(R𝑝)∇𝐸(𝑃(𝜃)).(6.15)

Proof. This follows directly from Lemma 6.3 by setting 𝑋 B 𝑇𝑃(𝜃)ℳ and 𝐴 = 𝐷𝑃𝜃, where

by the gradient chain rule it holds that ∇𝐿(𝜃) = 𝐷𝑃(𝜃)∗∇𝐸(𝑢𝜃). □

Proof of Theorem 6.2. The case of strongly convex energy 𝐸 is a falls into the setting of

Theorem 6.4 by defining the Riemannian metric via 𝑔𝑢 B 𝐷𝐸2(𝑢). It remains to show

that the Riemannian gradient with respect to the metric induced by the second derivative

𝐷2𝐸 is given by 𝐷2𝐸(𝑢)−1∇𝐸(𝑢). This follows from

𝐷2𝐸(𝑢)(𝐷2𝐸(𝑢)−1∇𝐸(𝑢), 𝑣) = ⟨∇𝐸(𝑢), 𝑣⟩ = 𝐷𝐸(𝑢)𝑣.(6.16)

Consider now the case of a symmetric quadratic function𝐸with positiv definite second

derivative 𝐷2𝐸 and assume that 𝐸 admits a unique minimizer 𝑢∗ ∈ 𝑋. Lemma 6.3 with

𝐴 = 𝐷𝑃𝜃 implies

𝐷𝑃𝜃𝐺(𝜃)+𝐷𝑃∗,𝑎𝜃 (𝑢 − 𝑢
∗) = Π𝑇𝜃ℱΘ (𝑢 − 𝑢∗),(6.17)
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where 𝐷𝑃∗,𝑎𝜃 denotes the adjoint of 𝐷𝑃𝜃 with respect to the inner product 𝑎. Hence, it

remains to show ∇𝐿(𝜃) = 𝐷𝑃∗,𝑎𝜃 (𝑢 − 𝑢∗). Note that 𝐸(𝑢) = 1

2
𝑎(𝑢 − 𝑢∗ , 𝑢 − 𝑢∗) + 𝑐 for a

suitable constant 𝑐 ∈ R. This follows from the computation

⟨𝐷𝑃∗,𝑎𝜃 (𝑢 − 𝑢
∗), 𝑒𝑖⟩R𝑝 = 𝑎(𝑢𝜃 − 𝑢∗ , 𝐷𝑃𝜃𝑒𝑖)

= 𝑎(𝑢𝜃 − 𝑢∗ , 𝜕𝜃𝑖𝑢𝜃)
= 𝐷𝐸(𝑢𝜃)𝜕𝜃𝑖𝑢𝜃
= 𝜕𝜃𝑖𝐿(𝜃),

(6.18)

where we used the chain rule in the last step. □

In particular, we see from (6.9) and (6.10) that using the energy natural gradient

in parameter space is closely related to a Newton update in function space, where for

quadratic energies the Newton direction is given by the error 𝑢𝜃 − 𝑢★.

Interpretation as a generalized Gauss-Newton method. For an objective function

𝐿(𝜃) = 1

2
∥ 𝑓 (𝜃)∥2

2
for 𝑓 : R𝑝 → R𝑛 the entries of the Gauss-Newton matrix are given by

𝐴𝐺𝑁 (𝜃)𝑖 𝑗 = 𝜕𝜃𝑖 𝑓 (𝜃)⊤𝜕𝜃𝑗 𝑓 (𝜃). Typically, as a motivation for this choice the decomposition

𝜕𝜃𝑖𝜕𝜃𝑗𝐿(𝜃) = 𝜕𝜃𝑖 𝑓 (𝜃)⊤𝜕𝜃𝑗 𝑓 (𝜃) +
𝑛∑
𝑘=1

𝑓𝑘(𝜃)𝜕𝜃𝑖𝜕𝜃𝑗 𝑓𝑘(𝜃)

of the Hessian of the objective is used to argue that the Gauss-Newton matrix approxi-

mates the Hessian. For a general loss 𝐿(𝜃) = 𝐸(𝑃(𝜃)) entries of the Hessian of the objective

function is give by

(6.19) 𝜕𝜃𝑖𝜕𝜃𝑗𝐿(𝜃) = 𝜕𝜃𝑖𝐷𝐸(𝑢𝜃)𝜕𝜃𝑗𝑢𝜃 = 𝐷2𝐸(𝑢𝜃)(𝜕𝜃𝑖𝑢𝜃 , 𝜕𝜃𝑗𝑢𝜃) + 𝐷𝐸(𝑢𝜃)𝜕𝜃𝑖𝜕𝜃𝑗𝑢𝜃 ,

where the first term equals the entry 𝐺𝐸(𝜃)𝑖 𝑗 of the energy gram matrix. In analogy to

the classical Gauss-Newton method the first term can be interpreted as a generalized

Gauss-Newton matrix [249, 192, 230]. Therefore, the energy natural gradient – and in

general any natural gradient induced by the Hessian of the function space objective – can

be interpreted as a generalized Gauss-Newton method. Recently, a generalized Gauss-

Newton method that coincides with the energy natural gradient has been proposed and

analyzed for the special case of a quadratic deep Ritz energy [130].

However, we do not refer to the proposed method as a generalized Gauss-Newton

method since we do not see it as an approximation of Newton’s method. Much rather,

by Theorem 6.2 we see it as a better choice of the update direction as in function space it

corresponds to a Newton update.

6.1.3. Visualization of the function space update directions. In order to demon-

strate Theorem 6.2 we visualize the update directions in function space for the energy

natural gradient as well as the update directions of Newton’s method and the vanilla

gradient and compare them to the actual error. Recall that when updating the parameter

𝜃 ∈ R𝑝 in direction 𝑣 ∈ R𝑝 , i.e., 𝜃′ = 𝜃 + 𝜂𝑣, the resulting update direction in function

space is approximately𝐷𝑃(𝜃)𝑣 since by Taylor’s theorem 𝑢𝜃′ = 𝑢𝜃+ 𝑡𝐷𝑃(𝜃)𝑣+𝑂(𝑡2∥𝑣∥2).
Hence, we plot the push forwards

𝐷𝑃(𝜃)𝐺𝐸(𝜃)+∇𝐿(𝜃), 𝐷𝑃(𝜃)𝐻(𝜃)+∇𝐿(𝜃) and 𝐷𝑃(𝜃)∇𝐿(𝜃)
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of the energy natural gradient, the Newton update direction and the vanilla gradient for

a random initialization of 𝜃. Here, as a preconditioner for the Newton update direction

we choose

𝐻(𝜃) = 𝐷2𝐿(𝜃) −min(0,𝜆𝑚𝑖𝑛(𝐷2𝐿(𝜃)))𝐼 ,
where 𝜆𝑚𝑖𝑛(𝐷2𝐿(𝜃)) denotes the smallest eigenvalue of the Hessian 𝐷2𝐿(𝜃). This is to

ensure that preconditioner is positive semi-definite. When plotting the update directions

in function space we normalize them to have values in [−1, 1] to allow for a better visual

comparison. As a reference for the update directions, we plot the error 𝑢𝜃 − 𝑢∗ the model.

We first consider a two-dimensional Poisson equation

−Δ𝑢(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) = 2𝜋2

sin(𝜋𝑥) sin(𝜋𝑦)

on the unit square [0, 1]2 with zero boundary values and use a shallow network with 32

hidden neurons and the hyperbolic tangent tanh as an activation function. The solution

is given by

𝑢∗(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦).
We draw a parameter vector 𝜃 from a Gaussian distribution and in Figure 6.1 we plot the

error 𝑢𝜃 − 𝑢∗ as well as the push forwards of the energy natural gradient, the Newton

update direction and the vanilla gradient. Visually, the energy natural gradient update

direction matches the error 𝑢𝜃 − 𝑢∗, which is in accordance with Theorem 6.2 that states

that the update direction of energy natural gradients corresponds to the projection of

the error 𝑢𝜃 − 𝑢∗ onto the generalized tangent space of the neural network model. In

contrast, the push forwards of the Newton update direction and the vanilla gradient are

very different to the error 𝑢𝜃 − 𝑢∗.

𝑢𝜃 − 𝑢∗ Energy NG Newton’s method Vanilla gradient

Figure 6.1. Shown are the error 𝑢𝜃−𝑢∗ and the push forwards of the energy

natural gradient, the Newton update direction and the vanilla gradient; all

functions normed to lie in [−1, 1] to allow for a visual comparison.

As a second example we consider the one-dimensional heat equation

𝜕𝑡𝑢(𝑡 , 𝑥) =
1

4

𝜕2

𝑥𝑢(𝑡 , 𝑥) for (𝑡 , 𝑥) ∈ [0, 1]2

𝑢(0, 𝑥) = sin(𝜋𝑥) for 𝑥 ∈ [0, 1]
𝑢(𝑡 , 𝑥) = 0 for (𝑡 , 𝑥) ∈ [0, 1] × {0, 1}.

with solution

𝑢∗(𝑡 , 𝑥) = exp

(
−𝜋

2𝑡

4

)
sin(𝜋𝑥).
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Again, we use a shallow network with tanh activation and 32 hidden neurons and draw

a parameter 𝜃 according to a standard Gaussian distribution. Just like in the case of

𝑢𝜃 − 𝑢∗ Energy NG Newton’s method Vanilla gradient

Figure 6.2. The first image shows 𝑢𝜃−𝑢∗, the second image is the computed

natural gradient and the last image is the pushforward of the standard

parameter gradient. All gradients are pointwise normed to [−1, 1] to allow

visual comparison.

the Poisson equation, the push forward of the energy natural gradient matches the error

𝑢𝜃 − 𝑢∗ very well. Again, Newton’s direction and vanilla gradient descent fail to provide

update directions in function space that lead to updates proportional to the error.

6.2 Experiments

We test energy natural gradients on four problems: the PINN formulations of two two-

dimensional Poisson equation, a PINN formulation of a one-dimensional heat equation

and a deep Ritz formulation of a one-dimensional, nonlinear elliptic equation. We evalu-

ate its performance against gradient descent, Adam and Newton’s method.

6.2.1. Description of the experiments. For all our numerical experiments, we realize

an energy natural gradient step with a line search as described in Algorithm 4. We

choose the interval [0, 1] for the line search determining the step size since a step size of 1

would correspond to an approximate Newton step in function space. However, since the

parametrization of the model is non linear, it is beneficial to conduct the line search and

can not simply choose the Newton step size. In our experiments, we use a grid search over

a logarithmically spaced grid on [0, 1] to determine the learning rate 𝜂∗. The assembly of

Algorithm 4 Energy Natural Gradient Descent with Line Search (E-NGD)

Input: initial parameters 𝜃0 ∈ R𝑝 , maximum number of iterations 𝑁𝑚𝑎𝑥 , functions

𝜆𝑘 : R𝑝 → R≥0

for 𝑘 = 0, . . . , 𝑁𝑚𝑎𝑥 − 1 do
Compute ∇𝐿(𝜃𝑘) ∈ R𝑝
𝐺𝐸(𝜃)𝑖 𝑗 ← 𝐷2𝐸(𝜕𝜃𝑖𝑢𝜃 , 𝜕𝜃𝑗𝑢𝜃) + 𝜆𝑘(𝜃)𝛿𝑖 𝑗 for 𝑖 , 𝑗 = 1, . . . , 𝑝

∇𝐸𝐿(𝜃) ← 𝐺+
𝐸
(𝜃)∇𝐿(𝜃) ⊲ Compute the natural gradient

𝜂𝑘 ← arg min𝜂∈[0,1] 𝐿(𝜃 − 𝜂∇𝐸𝐿(𝜃)) ⊲ Choose step size via line search

𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘∇𝐸𝐿(𝜃𝑘) ⊲ Update parameters

end for
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the Gram matrix 𝐺𝐸 can be done efficiently in parallel, avoiding a potentially costly loop

over index pairs (𝑖 , 𝑗). Instead of computing the pseudo inverse of the Gram matrix 𝐺𝐸(𝜃)
we solve the least square problem

(6.20) ∇𝐸𝐿(𝜃) ∈ arg min

𝜓∈R𝑝
∥𝐺𝐸(𝜃)𝜓 − ∇𝐿(𝜃)∥2

2
.

Although naive, this can easily be parallelized and performs fast and efficient in our

experiments.

Further, we introduce a scaling parameter 𝜆𝑘(𝜃) ≥ 0 for a Levenberg–Marquardt type

modification of the energy natural gradient, i.e., we use the preconditioner 𝐺𝐸(𝜃)𝑖 𝑗 ←
𝐷2𝐸(𝜕𝜃𝑖𝑢𝜃 , 𝜕𝜃𝑗𝑢𝜃) + 𝜆(𝜃)𝛿𝑖 𝑗 . In our experiments we test both the performance of energy

natural gradients for 𝜆𝑘(𝜃) = 0 as well as for 𝜆𝑘(𝜃) ∝ 𝐿(𝜃) as we observed this to be

yield good results, see also [307]. For the numerical evaluation of the integrals in the

loss function as well as in the entries of the Gram matrix we experiment both with fixed

integration points on a regular grid and repeatedly and randomly drawn integration

points.

Tested optimizers. We compare energy natural gradient to vanilla gradient descent,

Adam and Newton’s method. Here, we describe these baselines in more detail. First, we

consider vanilla gradient descent (denoted as GD in our experiments) with a line search

on a logarithmic grid. Then, we test the performance of Adam with an exponentially

decreasing learning rate schedule to prevent oscillations, where we start with an initial

learning rate of 10
−3

that after 1.5 · 10
4

steps starts to decrease by a factor of 10
−1

every 10
4

steps until a minimum learning rate of 10
−7

is reached or the maximal amount of iterations

is completed. Further, we chose not to include the Hilbert space natural gradient induced

since we found it to not yield competitive results and sometimes even failing to reduce

the error at all.

Further, we test Newton’s method, which for a strongly convex produces the updates

(6.21) 𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘𝐻(𝜃𝑘)+∇𝐸𝐿(𝜃𝑘),

where 𝐻(𝜃𝑘) = 𝐷2𝐿(𝜃𝑘) is the Hessian of the objective. Since the objective is non convex

in our settings, we follow [222] and choose

(6.22) 𝐻(𝜃𝑘) = 𝐷2𝐿(𝜃𝑘) −min(0,𝜆𝑚𝑖𝑛(𝐷2𝐿(𝜃)))𝐼 ,

where 𝜆𝑚𝑖𝑛(𝐷2𝐿(𝜃𝑘)) denotes the smallest eigenvalue of the Hessian 𝐷2𝐿(𝜃𝑘). This en-

sures that 𝐻(𝜃𝑘) is positive semi-definite. Finally, we conduct a line search to choose the

step size 𝜂𝑘 .
Overall, we compare the following optimizers in our experiments:

• Gradient descent with line search (GD)

• Adam

• Newton’s method (Newton)

• Energy natural gradient (E-NGD)

• Energy natural gradient with Levenberg–Marquardt modification (E-NGD-LM)

We chose not to include gradient descent with fixed step size as we found it to perform

inferior to gradient descent with line search. We also did not include the Sobolev natural

gradients proposed in [223] as we did not find them to yield competitive performance
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when compared to energy natural gradients or Newton’s method. Further, we did not

include Newton’s method with a Levenberg-Marquardt modification as we found this to

offer no benefit over the Newton method used here; note that we add a multiple of the

identity matrix to the Hessian whenever the Hessian is has a negative eigenvalue (6.22),

which was in practice almost always the case. We report the relative3 𝐿2
errors during

and after the optimization process.

Computation details. For our implementation we rely on the library JAX [60], where

all required derivatives are computed using JAX’ automatic differentiation module. The

JAX implementation of the least square solve relies on a singular value decomposi-

tion. The code used in order to assemble the Gram matrices and compute the natu-

ral gradients can be found in the repository https://github.com/MariusZeinhof

er/Natural-Gradient-PINNs-ICML23. For the implementation of Newton’s method

we use the function jax.hessian to compute the Hessian of the objective and employ

jax.numpy.linalg.eigvals to compute its eigenvalues.

6.2.2. Two-dimensional Poisson equation. We consider the two-dimensional Poisson

equation

−Δ𝑢(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) = 2𝜋2

sin(𝜋𝑥) sin(𝜋𝑦)
on the unit square [0, 1]2 with zero boundary values. The solution is given by

𝑢∗(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦)
and the PINN loss of the problem is

𝐿(𝜃) = 1

𝑁Ω

𝑁Ω∑
𝑖=1

(Δ𝑢𝜃(𝑥𝑖 , 𝑦𝑖) + 𝑓 (𝑥𝑖 , 𝑦𝑖))2 +
1

𝑁𝜕Ω

𝑁𝜕Ω∑
𝑖=1

𝑢𝜃(𝑥𝑏𝑖 , 𝑦
𝑏
𝑖 )

2 ,(6.23)

where {(𝑥𝑖 , 𝑦𝑖)}𝑖=1,...,𝑁Ω
denote the interior collocation points and {(𝑥𝑏

𝑖
, 𝑦𝑏

𝑖
)}𝑖=1,...,𝑁𝜕Ω de-

note the collocation points on 𝜕Ω. In this case the energy inner product on𝐻2(Ω) is given

by

(6.24) 𝑎(𝑢, 𝑣) =
∫
Ω

Δ𝑢Δ𝑣d𝑥 +
∫
𝜕Ω
𝑢𝑣d𝑠.

Note that this inner product is not coercive4 on 𝐻2(Ω) and different from the 𝐻2(Ω) inner

product. The integrals in (6.24) are computed using the same collocation points as in the

definition of the PINN loss function 𝐿 in (6.23).

Algorithmic choices. To approximate the solution 𝑢∗we use a shallow neural network

with the hyperbolic tangent as activation function and a width of 32, thus there are 129

trainable weights. We choose 900 equi-distantly spaced collocation points in the interior

of Ω and 120 collocation points on the boundary. The energy natural gradient descent

and the Hilbert natural gradient descent are applied for 10
3

iterations each, whereas we

train for 10
5

iterations of GD and Adam. For all methods apart from Adam we conduct

a line search evaluating the objective for the step sizes {2−𝑘 : 𝑘 = 0, . . . , 30}. For the

Levenberg-Marquardt type modification of the natural energy gradient descent we add

𝜆𝑘(𝜃)𝐼 = 10
−6−𝑚𝐿(𝜃)𝐼 if 𝑘 ∈ {100𝑚, 100𝑚+99} to the respective gram matrix. We initialize

3i.e., normalized by the norm of the solution

4the inner product is coercive with respect to the 𝐻1/2(Ω) norm, see [214]
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Median Minimum Maximum

GD 1.2 · 10
−2

2.6 · 10
−3

2.3 · 10
−2

Adam 1.3 · 10
−3

7.7 · 10
−4

1.9 · 10
−3

E-NGD 1.3 · 10
−7 1.7 · 10−8 2.5 · 10−7

E-NGD-LM 9.3 · 10−8
1.9 · 10

−8
5.8 · 10

−7

Newton 1.7 · 10
−6

7.2 · 10
−7

1.0 · 10
−5

Table 6.1. Median, minimum and maximum of the relative 𝐿2
errors

for the Poisson equation example achieved by different optimizers over 10

initializations. Here, the energy natural gradient methods and Newton’s

method are run for 10
3

and the other methods for 10
5

iterations.

the network’s weights and biases according to a Gaussian with standard deviation 0.1

and vanishing mean.

Evaluation and discussion. In Table 6.1 we report the minimum, median and maxi-

mum error of the different optimized over ten random initializations. Further, in Table 6.2

we report the wallclock and CPU time required per iteration as well as the total wall clock

time of the different optimizers in our experiments. In Figure 6.3 we present the evolution

of the relative 𝐿2
error for the different optimizers during the optimization.

Figure 6.3. Median relative 𝐿2
errors for the two dimensional Poisson

equation example over 10 initializations for the five optimizers; the shaded

area denotes the region between the first and third quartile; note that

GD and Adam are run for 100 times more iterations and GD, Adam and

Newton’s method are given more computation time than NGD, see Table 6.2.

From Table 6.1 and Figure 6.3, we deduce that energy natural gradient with and

without Levenberg-Marquardt type modification requires relatively few iterations to pro-

duce a highly accurate approximate solution of the Poisson equation. Newton’s method

achieves also solutions of high accuracy, which are around one order of magnitude less

accurate than the ones obtained by the energy natural gradient methods while taking

significantly more iterations and computation time. Further, the error decreases slower

when compared to the two variants of energy natural gradient descent, see Figure 6.3.

On the other hand vanilla gradient descent and Adam don’t achieve high accuracy and
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Iteration CPU time Iteration wall clock time Full wall clock time

GD 1.5 · 10
−2

s 9.7 · 10
−3

s 16min 6s

Adam 3.1 · 10−3s 3.0 · 10−3s 5min 3s

E-NGD 4.6 · 10
−1

s 5.9 · 10
−2

s 59s
E-NGD-LM 4.9 · 10

−1
s 6.8 · 10

−2
s 1min 8s

Newton 1.8s 2.9 · 10
−1

s 4min 50s

Table 6.2. Median computation times for the optimizers for the two di-

mensional Poisson example. The experiments were conducted on a Apple

M2 CPU with 16GB of RAM.

seem to saturate around a relative 𝐿2
error of 10

−2
and 10

−3
respectively. Their computa-

tion time per iteration is faster compared to the natural gradient methods and Newton’s

method; here, an iteration of gradient descent takes more time compared to Adam be-

cause of the line search. Note however, that we run gradient descent and Adam for 100

times more iterations and hence allow them to take more absolute wall clock time, see

Table 6.2. In this example one natural gradient update is around one order of magnitude

more expensive as one iteration of gradient descent or Adam when compared in wall

clock time, see Table 6.2. Overall, we find that energy natural gradient with and without

a Levenberg-Marquardt modification yields converges in very few iterations for different

initializations to approximate solutions of accuracy several orders of magnitude higher

compared to the other methods.

6.2.3. A higher frequency Poisson equation. Next, we test the energy gradient method

on a two-dimensional Poisson equation where the solution has high frequency parts. Usu-

ally such problems are regarded as being harder to solve with physics informed neural

networks [191]. Here, we adapt the example from above and consider the Poisson equation

−Δ𝑢(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) = 2𝑘2𝜋2

sin(𝑘𝜋𝑥) sin(𝑘𝜋𝑦)
on the unit square [0, 1]2 with zero boundary values where the solution is given by

𝑢∗(𝑥, 𝑦) = sin(𝑘𝜋𝑥) sin(𝑘𝜋𝑦),
where in our experiments we consider 𝑘 = 4.

Algorithmic choices. We make the same choices as in Subsection 6.2.2 for the dis-

cretization of the integrals, the line search, the number of iterations and the Levenberg-

Marquardt type modification. The only thing we change is the network architecture where

we choose to work with a shallow network with 64 hidden neurons. We stick however to

the choice of the hyperbolic tangent as an activation function and initialize the network’s

parameters according to a Gaussian with standard deviation 0.1 and vanishing mean.

Evaluation and discussion. In general, our evaluation is analogue to Subsection 6.2.2.

In Table 6.3 we report the computation times, in Figure 6.4 we show the relative 𝐿2
errors

during training and we omit the table with the errors at the end of training.

When comparing the energy natural gradient methods and Newton’s method we find

that the two energy natural gradient methods yield higher accuracy. At the beginning
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Figure 6.4. Median relative 𝐿2
errors for the two dimensional Poisson

equation example over 10 initializations for the five optimizers; the shaded

area denotes the region between the first and third quartile; note that

GD and Adam are run for 100 times more iterations and GD, Adam and

Newtons method are given more computation time than NGD, see Table 6.2.

Iteration CPU time Iteration wall clock time Full wall clock time

GD 2.9 · 10
−2

s 1.5 · 10
−2

s 25min 45s

Adam 7.4 · 10−3s 6.1 · 10−3s 10min 14s

E-NGD 1.4s 2.5 · 10
−1

s 4min 10s
E-NGD-LM 1.6s 3.3 · 10

−1
s 5min 28s

Newton 3.5s 1.1s 18min 57s

Table 6.3. Mean computation times for the optimizers for the two dimen-

sional Poisson example. The experiments were conducted on a Apple M2

CPU with 16GB of RAM.

of training however energy natural gradient without Levenberg-Marquardt type modifi-

cation and Newton’s method both exhibit a plateau for the first few hundred iterations.

This is not the case for the energy natural gradient with Levenberg-Marquardt type mod-

ification that achieves similar accuracy compared to the plain energy natural gradient

and suffers from less plateaus. Again, we see that gradient descent with line search and

Adam fail to produce high accuracy even when given significantly more computation

time compared to the energy natural gradient methods.

6.2.4. Heat equation. Let us consider the one-dimensional heat equation

𝜕𝑡𝑢(𝑡 , 𝑥) =
1

4

𝜕2

𝑥𝑢(𝑡 , 𝑥) for (𝑡 , 𝑥) ∈ [0, 1]2

𝑢(0, 𝑥) = sin(𝜋𝑥) for 𝑥 ∈ [0, 1]
𝑢(𝑡 , 𝑥) = 0 for (𝑡 , 𝑥) ∈ [0, 1] × {0, 1}.

The solution is given by

𝑢∗(𝑡 , 𝑥) = exp

(
−𝜋

2𝑡

4

)
sin(𝜋𝑥)
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and the PINN loss is

𝐿(𝜃) = 1

𝑁Ω𝑇

𝑁Ω𝑇∑
𝑖=1

(
𝜕𝑡𝑢𝜃(𝑡𝑖 , 𝑥𝑖) −

1

4

𝜕2

𝑥𝑢𝜃(𝑡𝑖 , 𝑥𝑖)
)

2

+ 1

𝑁in

𝑁Ω∑
𝑖=1

(
𝑢𝜃(0, 𝑥in

𝑖 ) − sin(𝜋𝑥in

𝑖 )
)

2

+ 1

𝑁𝜕Ω

𝑁𝜕Ω∑
𝑖=1

𝑢𝜃(𝑡𝑏𝑖 , 𝑥
𝑏
𝑖 )

2 ,

where {(𝑡𝑖 , 𝑥𝑖)}𝑖=1,...,𝑁Ω𝑇
denote collocation points in the interior of the space-time cylinder,

{(𝑡𝑏
𝑖
, 𝑥𝑏

𝑖
)}𝑖=1,...,𝑁𝜕Ω denote collocation points on the spatial boundary and {(𝑥in

𝑖
)}𝑖=1,...,𝑁in

denote collocation points for the initial condition. The energy inner product is defined

on the space

𝑎 :

(
𝐻1(𝐼 , 𝐿2(Ω)) ∩ 𝐿2(𝐼 , 𝐻2(Ω))

)
2

→ R

and given by

𝑎(𝑢, 𝑣) =
∫

1

0

∫
Ω

(
𝜕𝑡𝑢 −

1

4

𝜕2

𝑥𝑢

) (
𝜕𝑡𝑣 −

1

4

𝜕2

𝑥𝑣

)
d𝑥d𝑡

+
∫
Ω

𝑢(0, 𝑥)𝑣(0, 𝑥)d𝑥 +
∫
𝐼×𝜕Ω

𝑢𝑣 d𝑠d𝑡.

In our implementation, the inner product is discretized by the same quadrature points as

in the definition of the loss function.

Algorithmic choices. The network architecture and the training process are identical

to the previous example of the Poisson problem, i.e., we use a shallow network with 64

neurons and the hyperbolic tangent as activation function. We run the energy natural

gradient methods as well as Newton’s method for 2 · 10
3

iterations and gradient descent

and Adam for 10
5

iterations. We use the same choice for the strength of the Levenberg-

Marquardt type modification as for the two Poisson equations. We initialize the network’s

parameters according to a Gaussian with standard deviation 0.1 and vanishing mean.

Evaluation and discussion. Again, we present the computation times in Table 6.4 and

the relative 𝐿2
error during training in Figure 6.5.

For the heat equation observe a very similar behavior of the different optimizers:

both versions of the energy natural gradient descent achieve am accuracy of around one

order of magnitude better compared to Newton’s method while taking less time. We see

that also in this example the Levenberg-Marquardt type modification removes the initial

plateau of the energy natural gradient. Note again the saturation of gradient descent and

Adam above 10
−2

and 10
−3

relative 𝐿2
error respectively although they are given more

computation time.

6.2.5. A nonlinear example with the deep Ritz method. Finally, we test the energy

natural gradient method for a nonlinear problem utilizing the deep Ritz formulation.
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Figure 6.5. Median relative 𝐿2
errors for the heat equation example

throughout the training process for the five optimizers. The shaded area

displays the region between the first and third quartile of 10 runs for

different initializations. Note that GD and Adam are run for 100 times

more iterations and GD, Adam and Newton’s method are given more

computation time than E-NGD, see Table 6.4.

Iteration CPU time Iteration wall clock time Full wall clock time

GD 7.6 · 10
−3

s 5.1 · 10
−3

s 8min 33s

Adam 4.9 · 10−3s 4.9 · 10−3s 8min 12s

E-NGD 7.2 · 10
−1

s 1.1 · 10
−1

s 3min 37s
E-NGD-LM 1.3s 2.3 · 10

−1
s 7min 47s

Newton 1.3s 3.0 · 10
−1

s 10min 8s

Table 6.4. Mean computation times for the optimizers for the heat equa-

tion. For the time per iteration we averaged over 100 iterations. The

experiments were conducted on a Apple M2 CPU with 16GB of RAM.

Consider the one-dimensional variational problem of finding the minimizer of the energy

(6.25) 𝐸(𝑢) B 1

2

∫
Ω

|𝑢′ |2d𝑥 + 1

4

∫
Ω

𝑢4

d𝑥 −
∫
Ω

𝑓 𝑢 d𝑥

with Ω = [−1, 1] and 𝑓 (𝑥) = 𝜋2
cos(𝜋𝑥) + cos

3(𝜋𝑥). The associated Euler Lagrange

equations yield the nonlinear differential equation

−𝑢′′ + 𝑢3 = 𝑓 in Ω

𝜕𝑛𝑢 = 0 on 𝜕Ω
(6.26)

and hence the minimizer is given by 𝑢∗(𝑥) = cos(𝜋𝑥). Since the energy is not quadratic,

the energy inner product depends on 𝑢 ∈ 𝐻1(Ω) and is given by

𝐷2𝐸(𝑢)(𝑣, 𝑤) =
∫
Ω

𝑣′𝑤′ d𝑥 + 3

∫
Ω

𝑢2𝑣𝑤 d𝑥.
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Algorithmic choices. To discretize the energy and the inner product we use trape-

zoidal integration with 2 · 10
4

equi-spaced quadrature points, which we found to be nec-

essary in order to achieve high accuracy. We use a shallow neural network of width

of 32 neurons and a hyperbolic tangent as an activation function. For all methods

apart from Adam we conduct a line search evaluating the objective for the step sizes

{2−𝑘 : 𝑘 = 0, . . . , 30}. For the Levenberg-Marquardt type modification of the natural en-

ergy gradient descent we choose 𝜆𝑘(𝜃) = 10
−8−𝑚𝐿(𝜃) if 𝑘 ∈ {10𝑚, 10𝑚 + 9}. Both versions

of energy natural gradient descent and Newton’s method are applied for 10
3

iterations,

whereas we train GD and Adam for 10
5

iterations. Again, we initialize the network’s

parameters according to a Gaussian with standard deviation 0.1 and vanishing mean.

Evaluation and discussion. Once more, we observe that the energy NG updates effi-

ciently lead to a very accurate approximation of the solution, see Figure 6.6 for a visual-

ization of the training process and Table 6.5 for the computation times for the individual

methods.

Figure 6.6. Relative 𝐿2
errors for the nonlinear example throughout the

training process for the five optimizers. The shaded area displays the

region between the first and third quartile of 10 runs for different initial-

izations. Note that GD and Adam are run for 100 times more iterations

and GD, Adam and Newton’s method are given significantly more com-

putation time than E-NGD and E-NGD-LM, see Table 6.5.

Iteration CPU time Iteration wall clock time Full wall clock time

GD 2.4 · 10
−1

s 1.0 · 10
−1

s 2h 49min 40s

Adam 2.1 · 10−2s 1.8 · 10−2s 30min 45s

E-NGD 1.3s 3.0 · 10
−1

s 5min 1s
E-NGD-LM 1.5s 3.2 · 10

−1
s 5min 19s

Newton 5.8s 3.0s 49min 50s

Table 6.5. Median computation times for the optimizers for the nonlinear

example; experiments were conducted on a Apple M2 CPU with 16GB of RAM.

In this example both versions of the energy natural gradient achieve very high accuracy

in very few iterations often converging in less than 50 iterations. Again, Adam and
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standard gradient descent saturate early with much higher errors than the natural gradient

methods. In comparison, Newton’s method does not seem to saturate but only achieves

an accuracy two orders of magnitude larger compared to the energy natural gradients.

6.3 Conclusion and outlook

We propose to train physics informed neural networks with energy natural gradients,

which is a natural gradient based on the geometric information of the Hessian in function

space and can be interpreted as a generalized Gauss-Newton method. We show that

the energy natural gradient update direction corresponds to the Newton direction in

function space, modulo an orthogonal projection onto the tangent space of the model.

We demonstrate experimentally that this optimization achieves highly accurate PINN

solutions, well beyond the the accuracy that can be obtained with standard optimizers

even if these methods are allowed several order of magnitude more computation time. The

proposed method is compatible with arbitrary discretizations of the integrals appearing

in the objective and the gram matrix as with arbitrary network architectures.

Important steps in the pursue of efficient neural network based PDE solvers that can

be applied at an industrial scale include the following:

• Efficient implementation: An efficient implementation of energy natural gradients

– possibly in matrix-free fashion – would vastly improve the applicability of

physics informed neural networks to large scale and industrial problems.

• Initialization schemes: Since the convergence of energy natural gradient descent

is sensitive to the initialization we believe that it is important to gain a better

understand the behavior of different initialization schemes.

• Levenberg-Marquardt schemes: We observed Levenberg-Marquardt type modifi-

cations of energy natural gradient to reduce the plateaus of the energy natural

gradient. Where our choices seemed to work well in practice a systematic proce-

dure for the choice would improve the applicability of energy natural gradients.
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