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Abstract

Determinantal point processes (DPPs) are a probabilistic model of di-
verse subsets that exhibits desirable computational properties in terms
of its simulation, marginalisation and other operations. That is why they
have recently been used in an increasing amount of real world applica-
tions like text summarisation, the selection of a diverse subset of pic-
tures returned by an image search or the selection of human poses in a
picture (cf. [Kul12]). A crucial step in all of those applications is the
estimation of different parameters associated with DPPs and this is the
focus of this dissertation. We give an overview over two different types
of point estimators, their benefits and hindrances and provide proofs for
their consistency. The first one is based on the reconstruction of a sym-
metric matrix from its principal minors and allows to obtain an estimate
for the marginal kernel based on the empirical measures. The second
approach is the well established method of maximum likelihood estima-
tion (MLE). We provide proofs for the consistency of those estimators
including their regularised versions which can not be found in the litera-
ture so far. In practice, however, one has to maximise the log likelihood
function which is not concave in the case of DPPs and therefore this is
not possible in an efficient way. This motivates the Bayesian approach
to the estimation of those parameters and we show how the posterior
density can be approximated using different Markov chain Monte Carlo
(MCMC)methods. Further we provide toy examples for some of the pre-
sented estimation procedures and use those to investigate how the prior
or, equivalently, the regularisation of the MLE influences the estima-
tion. In fact, we show that they are not benefitial at all, not even under
the presence of noise unless one knows exactly how the noise affects the
estimation.
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Introduction

Before we introduce determinantal point processes (DPPs) mathematically we should give a short
motivation for their study as well as an overview over the dissertation and its contributions. It
is the goal to give a mostly self contained presentation to different approaches for the parameter
estimation for DPPs that is accessible to any student familiar with the basic notions of linear
algebra, analysis and probability theory. We prove most statements of this dissertation or give
precise references if the statements are not assumed to be (mathematical) general knowledge.

Motivation

Determinantal point processes are point processes, i.e. random subsets that exhibit a diversifying,
repulsive behaviour in the sense that the subset is likely to obtain only elements that are different
in someway. They arose first as the distribution of the eigenvalues of randommatrices in [MG60]
and later on in theoretical physics as the positions of Fermions like positively charged ˛-particles
that repell themselves (cf. [BM73]). Since then, they have appeared in the study of different
random objects like non intersecting random walks and the descent positions in a random digit
sequence (cf. [Joh04] and [BDF10]). The Wigner hypothesis states that the energy levels at
which a neutron is scattered or reflected by heavy nuclei are distributed according to a DPP
(cf. [Tao10]). Furthermore, DPPs arise in number theory as it has been conjectured that the
positions of the non trivial roots of the Riemannian zeta function are distributed according to a
determinantal point process (cf. [BK13]). Hence, DPPs are fundamental to different theories
and are therefore highly interesting objects and a rich mathematical theory has been developed
for them (cf. [Bor09], [HKPC06], [Lyo03]). In recent years DPPs have also been used to treat
different real world phenomena and we will only present three of them shortly here.

(i) Image search: Assume we have given a set of 106 pictures that were returned by a search
engine for a particular query. On the first page only a few, lets say 20 can be presented
and in order to increase the probability that the user is satisfied with at least one picture
it is favourable to include pictures that are not very similar in some notion. This can be
modelled by a DPP since the goal is to select a diverse subset of pictures (cf. [KT11]).
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(ii) Text summarisation: DPPs have also been used successfully for extractive summarisation
of news articles. The task of extractive summarisation is to select a subset of the sentences
in order to obtain a reasonable summary of the text. The reason for the use of DPPs – or
any other diversifying point process – is that similar sentences should not be selected for
the summary since they would be quite repetitive then and hence only one of the sentences
should be included in the summary (cf. [KT12a]).

(iii) Pose selection: One of the most impressive applications of DPPs has been found in the
task of human pose extraction. The goal is – given an image with an unknown amount
of persons – to schematically select their poses. A pose is associated with a quadrupel of
rectangles which represent the head, torso and the two arms of a person. Since a picture
consists of a finite number of pixels, the number of possible poses is also finite. It is pos-
sible to model how likely a certain pose is to be actually present in a given picture. If one
would sample naively according to those probabilities one runs into the following prob-
lem: Similar poses usually have almost the same probability since they should describe the
actual pose just about equally well. Hence, naive approaches are likely to select more than
one of those poses for the same human. This is where the repellent structure of a DPP can

Figure 0.1: The successive selection of poses in a picture using a DPP based on a the quality of
the poses which is depicted in the second column. Original graphic due to [KT10].



Introduction 3

help to make it unlikely to select similar poses which leads to the effect that in most cases
only one pose is selected for one person in the picture. This approach has successfully been
taken in [KT10] and made it possible to perform the pose selection without the knowledge
of the number of persons present in the picture.

The procedure of the application of DPPs to those and further real world problems can roughly
be divided into two parts. The first one consists of the selection of a suitable model for the given
task and the second one of the estimation of different parameters of the DPP which is the focus
of this dissertation.

Outline of the thesis

In the first chapter we introduce discrete determinantal point processes and present the funda-
mental concepts we will need. Further, we show that for a given marginal kernel a corresponding
DPP exists and see how DPPs can be simulated and apply this to some toy examples. In the
second chapter we will present two different ways to obtain an estimator for the marginal kernel
or parametrisations of it. We will see that both strategies yield a consistent estimator and will
discuss some of their benefits and hindrances. In the third chapter we will present the funda-
mentally different Bayesian approach to parameter estimation and apply it to the estimation of
parameters of DPPs. In order to do this in practice we have to make use of Markov chain Monte
Carlo (MCMC) methods and hence provide a minimalistic introduction to those. Finally we ap-
ply some of the presented estimation procedures to a toy example and will use this to investigate
the effect of different regularisations. The appendix contains a collection of some statements
used in the thesis, the R code that was used for the simulation of DPPs and also the parameter
estimations that where performed.

Contributions

The dissertation is mainly based on the PhD thesis [Kul12] and the research initiated by it, how-
ever, we provide a few novelties. We present a completely self contained presentation of the
estimator of the marginal kernel that was first proposed in [UBMR17] and give a different, ar-
guably easier proof for the consistency of this estimator. Furthermore, we will provide proofs for
the consistency of the maximum likelihood estimators for different parametric models of DPPs
that could not be found in the literature so far.1 In the last chapter we give a short introduction
to MCMC methods including a collection of its mathematical foundations that is shorter – and
of course not as comprehensive – than in most text books. We hope that the given toy examples
help the understanding of DPPs and the influence on the different parameters to its properties.

1At least to the best knowledge of the author.
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The provision of the code may be helpful to some readers, although it should be mentioned that
the algorithms and their implementations were chosen for brevity and clarity and therefore may
not be computationally optimal.



Chapter I

Determinantal point processes: Basic no-
tions and properties

In this chapter we provide an overview over the basic notions and results for discrete determinantal
point processes. Those will be necessary to study the problem of parameter estimation later on.
First we rigorously introduce the concept of discrete determinantal point processes and define
the most important subclass that we will work with later. This is exactly the subclass where one
can express the elementary probabilities of the point process nicely. This will be crucial later
on if one wants to perform the parameter estimation based on elementary probabilities, like for
example maximum likelihood estimation or Bayesian parameter estimation.

Then we will turn towards the question of existence and simulation of determinantal point
processes. This will lead to an algorithm that samples from a DPP which we will use to simulate
toy examples and also to generate the data sets we will perform parameter estimation for in the
following chapters.

I.1 Definitions and properties

We begin by presenting the general frame we will work in. This means that we will keep the nota-
tion introduced here and will use those objects throughout the thesis without further explanation.
We present all the important properties of determinantal point processes that we will need but
omit some calculations that have been presented somewhere else and don’t contribute to a better
understanding of the topic. A much more in depth survey of properties of determinantal point
processes including an extensive comparisons to several other point processes can be found in
the report [KTC12b].

1.1 Setting. Let Y be a finite set, which we call the ground set and N WD jYj its cardinality.
We call the elements of Y items and assume for the sake of easy notation Y D f1; : : : ; N g unless

5



6 I. Determinantal point processes: Basic notions and properties

specified differently. A point process on Y is a random subset of Y , i.e. a random variable with
values in the powerset 2Y . We will identify this random variable with its law1 P and thus refer to
probability measures P on 2Y as point processes and will not distinguish between those objects.
Further, Y will always denote a random subset distributed according to P.

1.2 Definition (Determinantal point process). We call P a determinantal point process,
or in short a DPP, if we have

P.A � Y/ D det.KA/ for all A � Y (1.1)

where K is a symmetric matrix indexed by the elements in Y and KA denotes the submatrix
.Kij /ij2A of K indexed by the elements of A. We call K the marginal kernel of the DPP. If the
marginal kernel K is diagonal, we call P a Poisson point process.

We note that all principal minors2 of K are necessarily non negative and Sylvester’s criterion
implies that K is positive semi-definite.3 Further it can be shown 4 that also the complement of
a DPP is a DPP with marginal kernel I �K where I is the identity matrix, i.e.

P.A � Yc/ D det.IA �KA/:

Thus, we can conclude I �K � 0 and obtain 0 � K � I . This actually turns out to be sufficient
for K to define a DPP through (1.1) which we will see in the fourth section of this chapter.

1.3 Repulsive behaviour of DPPs. If we choose A D fig and A D fi; j g for i; j 2 Y in
(1.1) we obtain the probabilities of the occurrence of the items i and j

P.i 2 Y/ D Ki i and

P.i; j 2 Y/ D Ki iKjj �K2ij D P.i 2 Y/ � P.j 2 Y/ �K2ij :
(1.2)

Thus, the appearances of the two items i and j are always negatively correlated. This negative
correlation is exactly what causes the diversifying behaviour of determinantal point processes and
leads to a repulsive behaviour that can be seen in Figure 1.1. Note that Poisson point processes
are exactly the DPPs without correlations of the points.
In this light the fact that also Yc exhibits negative correlations becomes less surprising. Since

the set Y tends to spread out due to the repulsion in (1.2), the complement, which is nothing but
the gaps that are left after eliminating the elements in Y, tend to show a repulsive structure too.
1The law of a random variable is the push forward measure of the probability measure of the probability space the
random variable is defined on.

2The principal minors of K are the determinants of the submatrices KA for A � Y .
3K is called positive semi-definite if xTKx � 0 for all x 2 RY . The Sylvester criterion states that a matrix is
positive semi-definite if and only if all principal minors are non negative.

4This follows from equation (2.3) in [Bor09].
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Figure 1.1: A DPPwith negative correlations of close points on a 100�100 grid in the unit square
on the left and a Poisson point process on the same grid and with the same expected cardinality
on the right. The – in this case spatially – repellent structure of the DPP is clearly visible.

1.4L-ensembles. Let us now introduce an important subclass of DPPs, namely the ones where
not only the marginal but also the elementary probabilities can be expressed through a suitable
kernel. This will be convenient for us later when we will need expressions for the elementary
probability in order to take a maximum likelihood approach5 to the estimation of certain param-
eters. If we have K < I , then we define the elementary kernel

L WD K.I �K/�1 (1.3)

which specifies the elementary probabilities since one can check 6

P.A D Y/ D
det.LA/

det.I C L/
for all A � Y : (1.4)

Conversely for any L � 0 a DPP can be defined via (1.2) and the corresponding marginal kernel
is given by the inversion of (1.3)

K D L.I C L/�1

and we have again K < I . We call DPPs which arise this way L-ensembles. We will see in
1.22 that the cardinality of a DPP is distributed like the sum of N Bernoulli experiments with
expectation .�n/nD1;:::;N where �n are the eigenvalues ofK. Being anL-ensemble is equivalent
to K < I which again is equivalent to �n < 1 for all n D 1; : : : ; N and hence equivalent to

P.Y D ∅/ D P.jYj D 0/ > 0:

5This will thoroughly be introduced in the next chapter.
6This is done in full detail in [Kul12] and we will not repeat those arguments here.



8 I. Determinantal point processes: Basic notions and properties

The quality diversity decomposition

We note that any symmetric positive semi-definite matrix L can be written as a Gram matrix

L D BTB

where B 2 RD�N and D is larger than the rank rk.L/ of L. For example one could take the
spectral decomposition L D U TCU of L and set B WD

p
CU and eventually drop some zero

rows from
p
C . Let Bi denote the i -th column of B and write this as a product Bi D qi � �i

where qi � 0 and �i 2 RD such that k�ik D 1. This yields the representation

Lij D qi�
T
i �j qj DW qiSij qj

and we call qi the quality of the item i 2 Y and �i the diversity feature vector of i and S the
similarity matrix or similarity kernel. Since we will use this decomposition multiple times, we
fix its properties.

1.5 Proposition (Quality diversity parametrisation). LetD 2 N and let SD denote the
sqhere in RD . Further let RN�Nsym;C be the set of symmetric positive semi-definite N �N matrices.
The quality diversity parametrisation is a continuous and surjective mapping

	 W RNC � SND !
n
L 2 RN�Nsym;C

ˇ̌
rk.L/ � D

o
; .q; �/ 7!

�
qi�

T
i �j qj

�
1�i;j�N

:

1.6 Remark. (i) In the caseD � N the quality diversity decomposition gives a parametri-
sation of the whole symmetric positive semi-definite N �N matrices.

(ii) Note that this parametrisation is not unique, i.e. 	 is not injective. For example the identity
matrix I can be parametrised by any orthonormal system � 2 SNN and q D .1; : : : ; 1/T .

(iii) One can without any problems consider diversity features �i in an abstract Hilbert space
H. However, we will not need this in the remainder and thus restrict ourselves to the easier
case of Euclidean diversity features.

(iv) We call every preimage .q; �/ ofL under 	 quality diversity decomposition ofL. Further,
we call the tupel � 2 SND of normalised vectors the diversity feature matrix.

Not only will the quality diversity decomposition play a central role when it comes to the
modelling of real world phenomena with DPPs. It will also provide some useful expressions like
the following one for the elementary probabilies

P.A D Y/ / det
�
.BTB/A

�
D

0@Y
i2A

q2i

1A � det.SA/ for all A � Y : (1.5)
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In order to get an intuitive understanding of the quality diversity decomposition we can think
of qi � 0 as a measure of how important or high in quality the item i is and the diversity feature
vector �i 2 RD can be thought of as some kind of state vector that consists of internal quantities
that describe the item i in some way. Further, we interpret the scalar product �Ti �j 2 Œ0; 1� as
a measure of similarity between the items i and j which justifies the name similarity matrix for
S . Note that if i and j are perfectly similar or antisimilar, i.e. �Ti �j D ˙1, then they can not
occur at the same time, since

P.i; j 2 Y/ D det

0@ 1 ˙1

˙1 1

1A D 0:
If we identify i with the vector Bi D qi�i 2 RD , we can obtain a geometric interpretation
of (1.5) since det

�
.BTB/A

�
is the squared volume that is spanned by the columns Bi ; i 2 A,

which is visualised in 1.2. This volume increases if the lengths of the edges which correspond
to the quality increase and decrease when the similarity feature vectors point into more similar
directions.

Figure 1.2: The first line (a) illustrates the volumes spanned by vectors, and in the second line it
can be seen how this volume increases if the length – associated with the quality – increases (b)
and decreases if they becomemore similar in direction which we interpret as two items becoming
more similar (c). Original graphic from [KTC12b].

1.7 Modelling diversity over distance. Since we will use one approach for the diversity
features multiple times, we will now give a short general formulation of it. LetR D fr1; : : : ; rDg
be a finite set which we will call the reference set and its elements the reference points. Further,
let

d W Y �R! RC; f W RC ! R
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be mappings. Usually d.i; r/ will be some measure of distance between an item i 2 Y and a
reference point r 2 R and will typically be given by a metric on a larger space that contains Y
andR. One can now model �i 2 RR via

.�i /r / f
�
d.i; r/

�
for r 2 R:

The function f will typically be decreasing and thus .�i /r can be seen as a measure of how
similar item i is to the reference point r 2 R. Thus, the diversity feature vector �i encodes how
similar the item i is to all reference points and the scalar product �Ti �j will be close to one, if the
items i and j have approximately the same degrees of similarity to the reference points. It shall
be noted that the choice of the number of reference points bounds the rank of the kernel L and
therefore also the largest subset that occurs with positive probability. Indeed we have rk.L/ � D
and for A � Y with more than D elements det.LA/ D 0 and therefore P.A/ D 0. In the last
section of this chapter we will give examples where d is quite naturally a metric and will see how
the choice of f is crucial for the strength of the repulsion.
Similar approaches for themodelling of the diversity feature vectors have been taken in [LCYO]

and [KT10] and further the method of reference points has been used in [BA15] to obtain bounds
for the elementary probabilities of a DPP.

1.8 Comparison to other point processes. A wide variety of point processes has been
studied and used in different applications and determinantal point processes are by far not the
only diversifying point processes. For example every Poisson point process can be turned into
a process with negative correlations by removing all points that lie within a certain distance of
another point of the subset. Another well studied class of point processes are the so called Gibbs
or Markov point proccesses. The elementary probabilities are given by

P.A/ / exp.�F.A//

where F W 2Y ! R is called the energy function is interpreted as a measure of how unfavourable
a subset A � Y is.
Although some of those classes of point processes posses nice theoretical properties they share

one major drawback. In fact, a lot computations and also the simulation of those point processes
can not be performed efficiently. For example, in the case of Gibbs point processes even the time
needed for the computation of the normalisation constantX

A�Y

exp.�F.A//

grows exponentially withN since it is the sum over an exponentially large set. However, the spe-
cial structure of the determinant itself leads to the explicit expression in (1.4) of the normalisation
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constant for DPPs and the computation time for the exact computation of it via Gauss elimination
only grows like N 3 or even slower for numerical approximations (cf. [Val79] and [EP05]). A
more in depth comparison of different point processes including their descriptive power can be
found in [KTC12b].

The mode problem

One general motivation for modelling is the hope that one can make predictions based on the
selected model. If the model is of stochastic nature, like in our case, and if one wants to predict
its outcome, there are a few possible approaches. The first and possibly simplest one would be
to sample from this model. This relies on the intuition that a realisation of a random variable
should be a rather typical example for the random event. Going one step further one could try to
find the most likely outcome of the random variable, which is known as the mode problem.

1.9 The mode problem. Let X be a random variable with values in some space X and let f
be the density of the distribution of X with respect to some reference measure. Then the mode
is the maximiser

Ox D argmax
x2X

f .x/

of the density if it exists. The search for the mode is called the mode problem.

Our motivation for finding the mode of a random variable was to make better predictions for
it. This hope is based on the believe that the mode should be a typical realisation of the random
variable. However, this is not generally the case and therefore one should be cautious with this
intuition. To see this we consider a random natural number with the following distribution

P.fng/ WD

8̂̂̂̂
<̂
ˆ̂̂:
0:1 if n D 20

0:09 if n D 0; 1; : : : ; 9

0 otherwise

:

Although 20 is the most likely elementary event, it is not a very typical outcome, since in 90%
of the cases the random variable will have values in f0; 1; : : : ; 9g and hence is far away from the
mode of the distribution. Similar examples can easily be constructed for continuous distributions.
The mode problem can often be solved explicitely or at least numerically if the density f is a

smooth function defined on a subset ofRd . However, in the case of DPPs we have to deal with the
probability measure on a finite set and thus the mode problem is a discrete optimisation problem
over the powerset 2Y . The exponential size of the powerset turns this into a hard computational
task and it has been shown that the time to compute the mode – or even an event with more than
8
9
its probability – grows exponentially with the cardinality N of Y (cf. [KTC12b]). However,
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some algorithms for the approximation of the mode have been proposed for certain classes of
DPPs or for the goal to find a subset of at least 1

4
of the probability of the mode. For further

reading we refer to [DK14] and [GKT12].

I.2 Variations of DPPs

In this section we will present some useful variations of determinantal point processes. They
serve different purposes and we will shortly explain their individual benefits.

1.10 Conditional DPPs. A conditional DPP is a collection of DPPs indexed byX 2 X , where
X is called the input of the conditional DPP. Thus, for everyX 2 X we get a finite set Y.X/ and
a determinantal point process P.�jX/ on Y.X/. We will usually assume that the single DPPs are
L-ensembles and hence they are given by elementary kernels L.X/, i.e.

P.AjX/ / det
�
LA.X/

�
for all A � Y.X/:

Further we denote the quality and diversity features of the conditional DPP by qi .X/ and �i .X/
respectively.
It is not immediately clear why one would want to model a family of DPPs as a conditional DPP

rather than as separate DPPs. The reason for this is that one wants to estimate the kernels L.X/
for every X 2 X . With a naive approach one would need to observe each of the DPPs P.�jX/
individually which is often not possible. Thus, one hopes to not only memorise the kernelsL.X/
for every single input X 2 X but rather to estimate the mapping that assigns every input X its
elementary kernel L.X/. If one achieved this task, one would be able to simulate and predict a
DPP that one has not observed so far just by the knowledge about some DPPs that belong to the
same conditional DPP. Of course this can only work if we assume some regularity or a certain
structure of the functionL and we will see one approach how this can be done in the next chapter.

In conclusion conditional DPPs are suitable for the extrapolation of parameter estimation from
observed to similar DPPs.

1.11 Fixed size or k-DPPs. We have introduced DPPs as a model of random diverse subsets
of a finite set. However, there are a lot of cases where the size of this subset is already known,
like for example if the DPP models the position of football players on the field, we already know
how many points we have to select, namely 11 – at least if no player was sent off or got injured.
The straight forward procedure to obtain a probability distribution over all subsets of a fixed

size that still propagates diversity is to condition a DPP on the event that it has this exact size.
If we conditioned on the event that the point process has k � N elements, we call this new
point process k-DPP. Luckily k-DPPs possess similarly attractive properties like normal DPPs,
in the sense that there is an analytical form of the normalisation constant as well as an effective
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sampling algorithm (cf. [KT11]). Hence, k-DPPs allow to describe random diverse subsets of
fixed size.

1.12 Structured DPPs. We call a DPP structured DPP or short sDPP if the ground set is the
cartesian product of some other setM, which we will call the set of parts, i.e. if we have

Y DMR
D

n
yi D .y

r
i /rD1;:::;R 2MR

ˇ̌
i D 1; : : : ; N

o
where R is a natural number,M D jMj and N DMR. The quality diversity decomposition of
L take the form

Lij D q.yi /�.yi /
T �.yj /q.yj /

and since N D MR is typically very big, it is impractical to define or store the quality and
diversity features for every item yi 2 Y . To deal with this problem we will assume that they
admit factorisations and are thus a combination of only a few qualities and diversities.
More precisely, we callF � 2f1;:::;Rg a set of factorisations and for a factor ˛ 2 F , y˛ denotes

the subtupel of y 2 Y that is indexed by ˛. Further, we will work with the decompositions

q.y/ D
Y
˛2F

q˛.y˛/

�.y/ D
X
˛2F

�˛.y˛/
(1.6)

for a suitable set of factorisations F and qualities and diversities q˛ and �˛ for ˛ 2 F . Note
that so far this is neither a restriction of generality – we could simply choose F D

˚
f1; : : : ; Rg

	
– nor a simplification – in that case we have the exact same number of qualities and diversities.
However, we are interested in the case where F consists only of small subsets of f1; : : : ; Rg. For
example, suppose that F is the set of all subsets with one or two elements, then we only have7

R �M C

 
R

2

!
�M 2

D O.R2M 2/

quality and diversity features instead of

MR
D O.MR/:

This reduction of variables will make modelling, storing and estimating them possible again in
a lot of cases where naive approaches are foredoomed because of their shear size.
Because we will neglect sDPPs in the following, we should quickly mention the reason why

one could want to select the set with one and two elements as a factorisation. One could try to
describe the trajectory of football players over a field through a sDPP and hence M would be a
7We write f .x/ D O.g.x// if f .x/ �Mg.x/ for all x � x0 and oneM > 0.
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discretisation of the field and r D 1; : : : ; R the different timesteps that one considers. Then the
qualities q˛ for j˛j D 1 are a measure of how favourable a position is for a player and the qualities
q˛ for j˛j D 2 can be seen as transition qualities that encode how good the transition from one
position to another is. This gives the opportunity to dictate a certain regularity to the paths since
a very big jump in position – the equivalent to a very irregular path – is very unlikely to occur
in real life and can therefore be made unlikely by the assignment of a low transition quality. For
more examples of the versatile applications of sDPPs we refer to [KT10].

I.3 Simulation and Existence of DPPs

One of the greatest challenges in the application of discrete point processes is that they are prob-
ability measures over an exponentially large set, namely the powerset 2Y which has cardinality
2N . Determinantal point processes have the benefit that they describe this distribution through
the matrix K which consists of only N 2 parameters. This reduction of the number of parame-
ters plays a central role in making a lot of operations possible in a computationally efficient way.
However, it is not only the relatively small amount of parameters that lead to this, but also the
structure of the determinant itself that leads to analytical expressions for a lot of quantities like the
normalisation constant in (1.4). In this section we will focus on the simulation of DPPs and see
how the special properties of the determinant play a central role here as well. In the end we will
give a short overview of further techniques that can improve the performance of this algorithm.

It should be mentioned that this section can be skipped if one is solely interested in the esti-
mation of the parameters of DPPs.

I.3.1 Cauchy-Binet type identities

First we state a general form of the famous Cauchy-Binet identity and will then derive the version
for matrices afterwards. Then we derive a result which can be seen as a formula for marginalisa-
tion for determinantal point processes and adapt ideas from [Rez12] for this.

1.13 Proposition (Cauchy-Binet). Let .X ; �/ be a � finite measure space and let further
�i ;  i 2 L

2.�/ be square integrable functions for i D 1; : : : ; n. Then we have

1

nŠ

ˆ

Xn

det
�
�i .xj /

�
1�i;j�n

det
�
 i .xj /

�
1�i;j�n

�.dx1/ � : : : � �.dxn/

D det
�ˆ

X
�i .x/ j .x/�.dx/

�
1�i;j�n

:

Proof. We use the Leibniz formula to express the determinants in terms of permutations. This
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yields
ˆ

Xn

det
�
�i .xj /

�
1�i;j�n

det
�
 i .xj /

�
1�i;j�n

�.dx1/ � : : : � �.dxn/

D

ˆ

Xn

X
�;�2Sn

sgn.�/ sgn.�/
nY
iD1

�i .x�.i// i .x�.i//�.dx1/ � : : : � �.dxn/

D

ˆ

Xn

X
�;�2Sn

sgn.�/ sgn.�/
nY
iD1

�i .x�.i// ��1.�.i//.x�.i//�.dx1/ � : : : � �.dxn/

D

X
�;�2Sn

sgn
�
��1 ı �

� nY
iD1

ˆ

X

�i .x/ ��1.�.i//.x/�.dx/

D nŠ �
X
�2Sn

nY
iD1

ˆ

X

�i .x/ �.i/.x/�.dx/

D nŠ � det
�ˆ

X
�i .x/ j .x/�.dx/

�
1�i;j�n

:

In the calculation we have used that the sign function is a group homomorphism from the per-
mutation group to f˙1g and thus

sgn
�
��1 ı �

�
D sgn.�/�1 sgn.�/ D sgn.�/ sgn.�/:

Further the second to last step is valid since for � 2 Sn exactly nŠ pairs of permutations .�; �/
satisfy ��1 ı � D �.

Now we present a discrete analogon of the Cauchy-Binet identity which will be of great use
later. We write Œn� for the set f1; : : : ; ngwhere n is a natural number andAIJ for the submatrix of
Awhere the first index is in I and the second one in J . Further, we keep the notationAI D AII .

1.14 Proposition (Cauchy-Binet for matrices). Let m; n 2 N; m � n be two natural
numbers and A 2 Rm�n; B 2 Rn�m two matrices. Then we have

det.AB/ D
X
I�Œn�
jI jDm

det
�
AŒm�I

�
det

�
BI Œm�

�
:

Proof. The assertion follows from the general Cauchy-Binet identity by using the counting mea-
sure on Œn� since the right hand side is equal to

1

mŠ

X
i1;:::;im2Œn�

det
�
Akil

�
1�k;l�m

det
�
Bikl

�
1�k;l�m

where we used that the determinants vanish if two indices ik and il agree for k ¤ l .
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1.15 Proposition (Marginalisation). Let .X ; �/ be a a � finite measure space and assume
that f�igiD1;:::;n � L2.�/ is an orthonormal set. Let x1; : : : ; xm 2 X for m < n, then we have

1

.n �m/Š

ˆ

Xm

det
�
�i .xj /

�2
1�i;j�n

�.dxmC1/ � : : : � �.dxn/

D det

0@ nX
kD1

�k.xi /�k.xj /

1A
1�i;j�m

:

Proof. Just like in the proof of the Cauchy-Binet identity we begin by expressing the determinants
through permutations and obtain

ˆ

Xm

det
�
�i .xj /

�2
1�i;j�n

�.dxmC1/ � : : : � �.dxn/

D

X
�;�2Sn

sgn.�/ sgn.�/
ˆ

Xm

nY
kD1

��.k/.xk/��.k/.xk/�.dxmC1/ � : : : � �.dxn/:

The multiple integrals over the product can be evaluated individually and hence the term above
is only non trivial – and identical to one in this case – if �.k/ D �.k/ for k D m C 1; : : : ; n

which we will denote by � � � . Therefore, the expression is equal toX
�;�2Sn
���

sgn.�/ sgn.�/
mY
kD1

��.k/.xk/��.k/.xk/

D .n �m/Š �
X
I�Œn�
jI jDm

det
�
�ik .xl/

�2
1�k;l�m

D .n �m/Š � det

0@ X
kD1;:::;n

�k.xi /�k.xj /

1A
1�i;j�m

where we used Cauchy-Binet and the notation I D fi1; : : : ; img. The combinatorial factor of
.n � m/Š arises since for a fixed image I D �.f1; : : : ; mg/, the two permutations � and � still
have .n �m/Š possibilities for their values on fmC 1; : : : ; ng.

Just like in the case of the Cauchy-Binet identity we will give a discrete version of the previous
result in which the normalisation factor does not appear.

1.16 Proposition (Variation of Cauchy-Binet). Let m � n be two natural numbers and
B 2 Rm�n be a matrix such that the rows of B form an orthonormal system. Further, let I � Œn�
with jI j � m, then we have

det
�
.BTB/I

�
D

X
I�J�Œn�
jJ jDm

det
�
BŒm�J

�2
:
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Proof. Set r WD jI j � m. If r D m, then the statement is trivial. Otherwise, let I D fi1; : : : ; irg,
then the right hand side is equal to

1

.m � r/Š
�

X
irC1;:::;im2Œn�

det
�
Bkil

�2
1�k;l�r

(1.7)

where we used that the determinant vanishes if two indices ik and il agree for k ¤ l . Now the
previous result completes the proof.

I.3.2 Sampling and Existence

We roughly follow the approaches taken in [HKPC06] and [KTC12b] and will start with the
result that every determinantal point process is the mixture of a smaller class of DPPs.

1.17 Theorem (Mixture representation of DPPs). Let P be a DPP and

K D

NX
kD1

�kvkv
T
k

be the spectral decomposition of its marginal kernel. Let now f�kgkD1;:::;N be a collection of
independent Bernoulli random variables with mean �k . Define now the random kernel

K� D

NX
kD1

�kvkv
T
k : (1.8)

Finally, define a second point process QP on Y that is obtained by first drawing the Bernoulli
variables �k and then a DPP according to K� . Then we have QP D P and thus QP is also a DPP
with marginal kernel K.

We will postpone the proof and first discuss its consequences which will be the existence of
DPPs for a given marginal kernel as well as the construction of a sampling algorithm.

1.18 Remark. Since it is fairly easy to simulate Bernoulli experiments, it remains to know
how we can sample from DPPs with marginal kernels of the form K D

Pm
kD1 vkv

T
k
for some

m � N . We call DPPs of this type elementary and note that this corresponds to the class of
DPPs where the eigenvalues of the marginal kernel are contained in f0; 1g.

Now we study the existence and simulation of elementary DPPs and 1.17 will immediately
generalise those results to DPPs without much effort.

1.19 Proposition (Existence of elementary DPPs). Let K D
Pm
kD1 vkv

T
k
for some or-

thonormal set V D fvkgkD1;:::;m � RY . Further, define the measure on 2Y through

P.A/ WD

8̂<̂
: det.KA/ if jAj D m

0 else
: (1.9)

Then P is a DPP on Y with marginal kernel K. In particular elementary DPPs exist.
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Proof. First we have to show that (1.9) defines a probability measure. For this let B 2 Rm�N

be the matrix with rows vk for k D 1; : : : ; m. By definition we have K D BTB and henceX
A�Y
jAjDm

det.KA/ D
X
A�Y
jAjDm

det
�
BŒm�A

�2
D det

�
BBT

�
D det

�
vTk vl

�
1�k;l�m

D 1

where we have used the Cauchy-Binet identity and the fact that V is orthonormal. It remains to
check that all marginal probabilities satisfy

P.A � Y/ D det.KA/:

For jAj � m this follows immediately, so let A D fi1; : : : ; irg for r < m. Then we obtain the
marginal probability of A through summation over the other m � r points. Namely we have

P.A � Y/ D
X

A�J�Œn�
jJ jDm

P.J � Y/ D
X

A�J�Œn�
jJ jDm

det
�
BŒm�J

�2
D det

�
.BTB/A

�
D det.KA/

where we used Proposition 1.16.

1.20 Corollary (Existence of DPPs). LetK be a symmetricN �N matrix. ThenK is the
marginal kernel of a DPP if and only if 0 � K � I .

Now we can turn towards the simulation of elementary DPPs where we will make use of the
previous result. In order to present the algorithms in a compact formwe will usually present them
in pseudocode. Here, the symbol stands for the assignment of a value, i.e. x  y means that
the variable x should have the value y from now on.

Algorithm 1 Sampling from an elementary DPP

Input: Marginal kernel K D
Pm
kD1 vkv

T
k
for fvkgkD1;:::;m orthonormal

1: V  fvkgkD1;:::;m

2: Y  ∅
3: while jV j > 0 do
4: pi  Pei the projection of ei onto span.V / for i 2 Y
5: Select i 2 Y with probability 1

jV j
� kpik

2

6: Y  Y [ fig

7: V  V? an orthonormal basis of the subspace of V orthogonal to pi
8: end while
9: return Y

1.21 Proposition (Sampling from elementary DPPs). Let K D
Pm
kD1 vkv

T
k

where
fvkgkD1;:::;m is a set of orthonormal vectors. Then Algorithm 1 produces a random variable
Y with values in 2Y which is an elementary DPP with marginal kernel K.
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Proof. We note that we only have to check that (1.9) holds and for this we fixA � Y . The output
Y has cardinality jmj since no element can be selected twice in the while loop and the size of V
decreases by exactly one in each iteration. Hence, it remains to show

P.A D Y/ D det.KA/

whenever jAj D m. Let for the sake of convenienceA D f1; : : : ; mg andY D f1; : : : ; N g. It suf-
fices to show that the while loop selects 1; : : : ; m in this exact order with probability 1

mŠ
det.KA/.

Let Vk denote the orthonormal set V in the k-th step of the while loop and let Pk�1 be the
projection onto span.Vk/ and set bi WD P0ei for i D 1; : : : ; N . We note that if 1; : : : ; k�1 were
selected in the first steps, then Pk�1 is exactly the projection to the subspace of span.Vk�1/ that
is orthogonal to b1; : : : ; bk�1. Since the spaces span.Vk/ are decreasing we have PkPj D Pk

for k � j and thus Pk�1ek D Pk�1P0ek D Pk�1bk .
Suppose now that we have selected 1; : : : ; k � 1 in the first k � 1 steps of the while loop. The

probability to select k in the next iteration is

1

jVkj
� kPk�1ekk

2
D

1

m � k
� kPk�1bkk

2 :

Thus, the probability to sample 1; : : : ; m in this order is equal to

1

mŠ
� kb1k

2
� : : : � kPm�1bmk

2 :

Since Pk�1 is the projection onto the subspace orthogonal to b1; : : : ; bk�1, the product is equal
to the squared m-dimensional surface measure of the parallelepiped spanned by b1; : : : ; bm. It
is well known from measure and integration theory that the squared surface is given by the de-
terminant of the Gram matrix

det

0BBB@
bT1 b1 � � � bT1 bm
:::

: : :
:::

bTmb1 � � � bTmbm

1CCCA D det
�
.BTB/A

�
where B 2 RN�N is the matrix which columns are equal to bk . Therefore, it remains to show
BTB D K. However, by definition B is the projection onto the span of fvkgkD1;:::;m and thus
B D K. Because K is symmetric like every projection, we have BT D B and hence we can
conclude BTB D B2 D B D K where we used that B is a projection.

1.22 Corollary (Cardinality of DPPs). Let P be a DPP with kernel

K D

NX
kD1

�kvkv
T
k :

Then the cardinality of the DPP is distributed like the sum of the Bernoulli variables f�kgkD1;:::;N
with expectations f�kgkD1;:::;m.
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Proof. To prove this, we only have to convince ourselves that after the Bernoulli experiments the
cardinality of a DPP with kernel (1.8) has size m WD

PN
kD1 �k almost surely. However, this is

obvious from the construction of elementary DPPs in Proposition 1.19.

Now we can apply Theorem 1.17 to extend the sampling algorithm to general DPPs.

Algorithm 2 Sampling from a DPP
Input: Eigendecomposition fvk; �kgkD1;:::;N of K
1: J  ∅
2: for k D 1; : : : ; N do
3: J  J [ fkg with probability �k
4: end for
5: V  fvkgk2J

6: Y  ∅
7: while jV j > 0 do
8: pi  Pei the projection of ei onto span.V / for i 2 Y
9: Select i 2 Y with probability 1

jV j
� kpik

2

10: Y  Y [ fig

11: V  V? an orthonormal basis of the subspace of V perpendicular to pi
12: end while
13: return Y

1.23 Theorem (Sampling algorithm). Let K 2 RN�N be any symmetric and positive
semi-definite matrix such that K � I . Then the distribution of the output Y of Algorithm 2 is a
DPP with marginal kernel K.

Proof. Theorem 1.17 states that an arbitrary DPP is the mixture of elementary DPPs and the for
loop in the algorithm represents exactly this mixing with the respective weights. Further, the
sampling result for elementary DPPs yields that the output of the second part of the algorithm,
namely the while loop, is distributed according to a DPP with marginal kernel

P
v2V vv

T .

1.24 Remark. Later on it will usually be more convenient to model or estimate the elementary
kernel L instead of the marginal kernelK. Thus, we should explain how the sampling algorithm
would work in this case. Since the two kernels are related by

K D L.LC I /�1

their eigendecompositions are closely related. Namely, if v is an eigenvector ofLwith eigenvalue
� � 0, then v is also an eigenvector ofK with eigenvalue �

�C1
> 0. After this transformation of

the eigendecomposition of L the sampling algorithm for K can be applied.
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We close this paragraph with the proof of 1.17 given in [KTC12b].

Proof of Theorem 1.17. Let A � Y; m WD jAj and set Wk WD .vkv
T
k
/A and WJ WD

P
k2J Wk .

Then we have

QP.A � Y/ D
X
J�ŒN �

det.WJ / � QP
�
�j D 1 if and only if j 2 J

�
:

Let
�
.Wk1/1.Wk2/2 � � � .Wkm/m

�
denote them�mmatrix with j -th row equal to the j -th row of

Wkj . Using the multilinearity of the determinant we obtain that the marginal probability above
is equal toX

J�ŒN �

X
k1;:::;km2J

det
�
.Wk1/1.Wk2/2 � � � .Wkm/m

�
� QP
�
�j D 1 if and only if j 2 J

�
D

NX
k1;:::;kmD1

det
�
.Wk1/1.Wk2/2 � � � .Wkm/m

� X
J�fk1;:::;kmg

QP
�
�j D 1 if and only if j 2 J

�
D

NX
k1;:::;kmD1

det
�
.Wk1/1.Wk2/2 � � � .Wkm/m

�
� QP
�
�kj D 1 if and only if j D 1; : : : ; m

�
D

NX
k1;:::;kmD1

det
�
.�k1Wk1/1.�k2Wk2/2 � � � .�kmWkm/m

�
D det

� NX
kD1

�kWk

�
D det.KA/:

This computation shows that QP is a DPP with marginal kernel K.

The dual representation

We will shortly discuss one method how the simulation of DPPs can be made more efficient.
The step in the sampling algorithm that takes the longest in practice is the computation of the
eigendecomposition of the matrixK or L. Hence, we will quickly show how this can be reduced
to the computation of the eigendecomposition of a smaller matrix.
Consider the matrix A D BTB 2 RN�Nsym;C; B 2 RD�N and set C WD BBT 2 RD�Dsym;C. Then

the spectral decomposition of A and C can be related in the following way.

(i) The eigenvalues of A and C agree. In fact, if v 2 RD is an eigenvector to the eigenvalue
� 2 R, then BT v is an eigenvector to the eigenvalue �, since

ABT v D BTBBT v D BTCv D �BT v:

(ii) If v is a normed eigenvector to the eigenvalue � > 0, then we haveBT v2 D .BT v/T .BT v/ D vTBBT v D vTCT v D �
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and hence B
T vp
�

is a normed eigenvector to the eigenvalue � > 0.

(iii) Finally, if fv1; : : : ; vmg is an orthonormal set of eigenvectors to the non trivial eigenvalues
f�1; : : : ; �mg of C , then (

BT vkp
�k

ˇ̌̌
k D 1; : : : ; m

)
is an orthonormal set of eigenvectors to the non trivial eigenvalues of A.

Hence, if K or L are given as a gram matrix BTB , it suffices to compute the eigendecom-
position of BBT 2 RD�Dsym;C, which could be significantly faster if D < N . Since the sampling
algorithm relies only on the eigendecomposition it can be performed based on the dual represen-
tation presented above. It should be mentioned that typically L will modelled as a gram matrix
via the quality diversity decomposition and hence this dual representation will mostly be used
for L. Further, it comes with even greater benefits here, since the normalisation constant

det.LC I / D
NY
kD1

.1C �k/ D det
�
BBT C I

�
reduces to the computation of the determinant of aD �D matrix.

The dual representation can make the computations involved with DPPs efficient, but in some
cases it might not be effective enough. Therefore, different techniques have been proposed in
order to achieve faster computation times, like random projections. This approach relies on the
result from [MZ08] that points in an N -dimensional space can be randomly projected into a
space of dimension O.log.N // in such a way, that the volume spanned by those points is almost
preserved with a high probability. For a discussion of this approach we refer to [Kul12].

I.4 Simulation of toy examples

We will present two examples and although – or maybe even because – they are very simple they
show how the choice of different parameters in the modelling process affect the DPP.

Points on a line

We start bymodelling a one dimensional DPP and simulating from it. More precisely we consider
the ground setY WD f1; : : : ; 100g. Further, wemodel the diversity feature vectors like in 1.7 using
reference points and choose R WD Y as a reference set. Now let f to be a normal density with
mean 0, i.e. we have

.�i /j / exp

 
�
.i � j /2

�

!
for i; j 2 Y :
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We will choose � D 20 first and then � D 5 to see how this parameter affects the repulsion of
the DPP. Finally we set the qualities to be constant and scale them so that the expected cardinal-
ity of the DPP is approximately 15. Further, we define a Poisson point process with the same
expected cardinality. This means the Poisson point process includes every point independently
with probability 15

100
. A comparison of a sample from those three point processes is depicted in

Figure 1.3 and the – in this case spatially – repulsive structure of the DPP is apparent.
0
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Figure 1.3: TwoDPPs with a different strength of repulsion on the left and a Poisson point process
on a (discretised) line with same expected cardinality. The spatial repulsion of the DPPs is clearly
visible.

We shall quickly discuss what influence the choice of f has on the strength of the repulsion
of the DPP. For this we let the parameter � tend to infinity and note

�i
�!1
����!

1
p
N
�

0BBB@
1
:::

1

1CCCA 2 RN :

Hence the similarity �Ti �j between item i and j will increase and therefore the negative correla-
tion gets stronger as � grows. Hence, the DPP will become increasingly repulsive if we increase
the parameter � which can be seen in Figure 1.3 where the first sample corresponds to the choice
� D 20, the second one to � D 5. On a more formal level one can argue that if one models the
diversity feature vectors this way, we center Gaussian densities at the reference points and then
associate an item i with how likely it is under this Gaussian densities. If we increase the stan-
dard deviation � of this density all items become increasingly similar in relation to the reference
points. Similar considerations apply if f is not a normal density.
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Binary sequences

It is well known that a 0�1 sequence that is generated by a human and made to look random will
typically differ strongly from a randomly generated 0�1 sequence.8 For example the total amount
of changes between zeros and ones is typically significantly higher in the human pseudorandom
sequence. Also the length of the longest chain of zeros or ones will likely be significantly shorter
(cf. [Rüs14]). Hence, the position of the ones tend to repell themselves since a human will
typically think that a long chain of successive ones will be atypical for a random sequence and
thus one could model these positions through a DPP.

We will consider 0 � 1 sequences of length 30 and therefore set Y WD f1; : : : ; 30g and define
the DPP in the exact same way as above. This means, we choose f to be a normal density, but
will choose the variance such that the repulsion is visible but not too strong and scale the qualities
such that the expected cardinality is 15, since a human would probably aim to write down around
15 ones. In completely analogue fashion to the previous examples we define a Poisson point
process with the same expected cardinality. This time we will represent the samples from the
two point processes through a 0� 1 sequence where a 1 at the i -th position indicates that item i

was in the sample. We obtain the two following samples:

101001011010001010010101010011

111111101010000110100011010011

Although the first sequence might actually look more random at first, this is the one generated by
the DPP and on second sight one realises that the positions of the ones are rather spread out, i.e.
negatively correlated. Indeed in the first sequence the longest chain of zeros or ones is of length
three, in the second one of length seven. The amount of changes between zero and one is 22 in
the first sequence and only 14 in the second sequence.

Although the DPP presented above incorporates some of the properties one might expect from
a 0 � 1 sequence created by a human, this process will not be exactly determinantal. However,
it shall be noted that different 0 � 1 sequences studied in probability theory exhibit an exact de-
terminantal structure. For example Borodin-Diaconis-Fulman studied the sequence of descent
positions in [BDF10]. To obtain those sequences one first samples a sequence of N C 1 inde-
pendent digits f0; 1; : : : ; 9g. Then one marks the positions in f1; : : : ; N g where the successor of
the digit is strictly smaller than the current digit. The heuristical argument why those positions
of descent repell themselves is that if k is not a point of descent, then the digit on the position
k C 1 is likely to be big and hence likely to be a point of descent.

8At least if the human is sufficiently unfamiliar with statistics.
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Points in a square

This time we want to built a DPP in a two dimensional square Œ0; 1�2 or at least a discrete ap-
proximation of it. This might be used to model the positions of trees that repel themselves due
to a competition for natural resources, positions of football players on the field or the positions
people choose for a picnic in a park.

In order to do this we follow an approach similar to the case of the one dimensional DPPs.
Hence, we set

Y WD 99�1 f0; : : : ; 99g2

and obtain a 100� 100 grid covering the unit square. Again, we chooseR WD Y and f to be the
normal density with mean 0 and variance � > 0. Then we choose the similarity feature vectors
to be

.�i /j / f .ki � j k/ for i; j 2 Y :

where k�k is the Euclidean norm. We propose constant qualities just like before and scale them
and also the variance � in such a way that we get a reasonable cardinality and also a notable
repulsion of the DPP. The resulting samples are depicted in Figure 1.4.

Figure 1.4: A DPP (right) and a Poisson point process (left) on a 100�100 grid in the unit square
with the same expected cardinality. The – in this case spatially – repellent structure of the DPP
is clearly visible.

It should be noted at this stage, that the simulation of the DPP can still be performed in rela-
tively short time, even without making use the dual sampling or the random projections. In fact,
one sample could be produced on a 1:8GHz Intel Core i5 with 8GB RAM9 in about two minutes.
This is actually quite astonishing given that the DPP is a discrete probability distribution over

9I used a MacBook Air from 2012.
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210
4

� 103000 elements. This is roughly the estimated number of elementary particles in the
universe to the power of 35.
Assume now that we have some reason to believe that the qualities of the individual points on

the grid are not equal. Maybe there might be a road just around the park and hence people prefer
to sit in the middle of the park and we can implement this into our model by letting the qualities
of the items decrease depending on their distance to the centrem WD .0:5; 0:5/ of the grid. More
precisely we choose

qi WD a � exp
�
� b ki �mk

�
where a; b > 0 are scaled such that the decrease of quality is visible but not too strong and that
a reasonable cardinality of the DPP is obtained. The results for this can be seen in Figure 1.5.

Figure 1.5: A DPP on a 100 � 100 grid in the unit square with decreasing qualities towards the
edges.



Chapter II

Point estimators and parametric models

Parameter estimation is one of the central components of every theory of real world phenomena.
In a nutshell one could split the process of the construction of a descriptive model into two parts.
The first one being the selection of the model which is done by a scientist and the second one
being the determination of the constants that belong to the model.

To make this more clear we will consider one of the most famous advances in the natural
sciences, namely the law of universal gravitation that was discovered by Sir Isaac Newton and
published in the Philosophiæ Naturalis Principia Mathematica (cf. [NH44]). More precisely,
Newton discovered that the gravitational force acting between two massive objects is given by

F D G �
m1m2

r2

where m1; m2 are the masses of the two objects, r is the distance between the centers of masses
and G is the gravitational constant. This constant can not be deduced from the theory itself and
needs to be estimated based on some empirical data.
If we want to describe, simulate and predict the occurence of diverse subsets we can take a

similar approach and impose the model of a determinantal point process. This will usually be an
assumption that will not strictly hold, but will often lead to reasonable, sometimes even impres-
sive results. We will not be concerned with how suitable this model selection is, although this is
a highly interesting question. Leaving that aside we are left with the second step, namely the esti-
mation of the parameters of the model, which are in the case of a DPP over a set of cardinalityN
exactlyN.N � 1/=2. Because of the rather large amount of parameters and also the complicated
structure of the DPPs it will in practice only be possible to perform those estimations through
the use of computational tools. The task of computer based parameter or density estimation is
an important field in the discipline of machine learning and thus we will sometimes speak of the
parameters being learned instead of estimated. Actually the interest of parameter estimation for
DPPs arose from the machine learning community at the beginning of this decade. However, we
will phrase things in a way that no prior knowledge in this field is required.

27
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In this chapter we will be concerned in howwe canmake point estimates for either the marginal
or the elementary kernels K and L. Point estimators are the most basic type of estimators and
consist of the suggestion of one possible parameter, for example in the case of the gravitational
constant

6:674 � 10�11Nkg�2m2:

This is in contrast to the Bayesian approach to parameter estimation that we will present in the
next chapter where the philosophy is to estimate a distribution over all possible parameter sets
that indicates how likely are to have caused the empirical data. We will discuss two essentially
different methods of point estimators, the first one provides a way to reconstruct a marginal kernel
for the empirical marginal distributions at least in the case where the empirical distribution is
essentially a DPP. The other one being maximum likelihood estimation in different variations.

But before we can proceed we want to remind the reader of two desirable properties of point
estimators. For this we will assume that we want to estimate the distribution of a random variable
X from a parametric family of probability measures˚

P� j � 2 �
	
:

This means we want to estimate � out of a possible set of parameters� such thatX is distributed
according to P� which we will do based upon some data x1; : : : ; xn. Further, we assume that
those points are actually generated by P�0 for one �0 2 � and denote the estimator by O�n. We
call the estimator unbiased if we have

EŒ O�n� D �0

and consistent if we have
O�n ! �0 in probability:

It shall be noted that although those properties are beneficial, they are not crucial for an esti-
mator to be reasonable. First they both assume that the data generating process, i.e. the random
variables one wants to describe actually follows one of the laws P�0 which will typically not be
the case in real world examples. Further, the asymptotic property of consistency is rather of theo-
retical nature since in practice it is not possible to create large sets of empirical data and certainly
not infinitely large ones.

II.1 Kernel reconstruction from the empirical measures

Now we will display the first way how one can estimate the marginal kernel K of a DPP based
on some samples drawn from it.
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2.1 Setting. Let Y be a finite set of cardinality N and let K 2 RN�Nsym satisfy 0 � K � I . Let
further Y1;Y2; : : : be independent and distributed according to a DPP with marginal kernel K.

In order to perform an approximate reconstruction of the marginal kernel we will consider the
empirical measures

OPn WD
1

n

nX
iD1

ıYi :

The interest in OPn lies in the fact that they are quite natural estimates for the actual underlying
distribution. In fact, they are unbiased estimators for P since for A � Y we have

EP
�
OPn.A/

�
D
1

n

nX
iD1

EP
�
ıYi .A/

�
D P.A/:

Furthermore, by the strong law of large numbers they converge to P almost surely if the sequence
.Yk/k2N of observations is independent. This can be seen by identifying the probabilitymeasures
on 2Y with the probability simplex8<:� 2 R2

Y
ˇ̌̌
�A 2 Œ0; 1� for all A � Y and

X
A�Y

�A D 1

9=;
and using the strong law of large numbers in R2Y .
Therefore the empirical measures are reasonable approximations of the actual probability dis-

tribution. Assume now for one moment that the empirical measures OPn are also determinantal
point processes with marginal kernel OKn, then OKn would be a quite intuitive estimate for the
actual marginal kernel K. Thus, we are interested in the question whether we can reconstruct
the marginal kernel of a DPP if we know the DPP itself. Since the marginal density of a DPP
corresponds to the principal minors of the marginal kernel, we first investigate whether we can
reconstruct a matrix from its principal minors. For the answer to this problem we follow the main
ideas presented in [UBMR17] and [RKT15] although we modify their arguments to make them
shorter and hopefully more accessible.

2.2 The principal minor assignment problem. Let K 2 RN�N be a symmetric matrix.
We want to investigate whether K is uniquely specified by its principal minors

�S WD det.KS / where S � f1; : : : ; N g

and if so how it can be reconstructed from those. We call this the symmetric principal minor
assignment problem (PMAP).

Before we present the general procedure we want to see how this would work in the case of
a symmetric 3 � 3 matrix K D .Kij /1�i;j�3. First we note that we can regain the diagonal
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elements as the determinant of the 1 � 1 sub matrices

det.Kfig/ D Ki i for i D 1; 2; 3:

Further the squares of the off diagonal are determined by the 2 � 2 principal minors since

det.Kfi;jg/ D Ki iKjj �K
2
ij for i; j D 1; 2; 3:

Therefore we only need to reconstruct the signs of the off diagonal entries. To do this, we consider
the determinant of the matrix itself

det.K/ D K11K22K33 C 2K12K13K23 �K11K223 �K22K
2
13 �K33K

2
12: (2.1)

Rearranging this yields

K12K13K23 D
1

2

�
det.K/CK11K223 CK22K

2
13 CK33K

2
12 �K11K22K33

�
:

Since we know all of the expressions on the right side, we can determine the sign of the product
on the left side. Now we assign the signs of the off diagonal elements in such a way, that the
above equation holds. More precisely if the product is negative, we assign a minus to one or all
three elements, if it is positive, then we assign a minus to none or two elements. If the product is
zero, every configuration of signs satisfy the desired property. It is now straight forward to check
that this assignment actually leads to the desired principal minors.

II.1.1 Graph theoretical concepts

One major step in the general procedure will be a generalisation of the formula (2.1) for larger
principal minors that will allow for the reconstruction of the signs. For this we will need the
following graph theoretical concepts.

2.3 Notions from graph theory. Let G D .V;E/ be a finite graph, i.e. V is a finite set,
called the vertex set and E consists of subsets of V with two elements, the edges. Sometimes we
will be sloppy in notation and not distinguish between the graph and the edge set. We will need
the following notions:

(i) Degree: For a vertex v 2 V the degree is the number of edges that contains v.

(ii) Subgraph: A graph QG D . QV ; QE/ is called a subgraph of G if QV � V and QE � E.

(iii) Induced graph: For a subset S � V of vertices the induced graph G.S/ D .S;E.S// is
formed of all edges e 2 E of G that are subsets of S .

(iv) Path: A path in G is a sequence v0v1 � � � vk of vertices such that fvi�1; vig 2 E for all
i D 1; : : : ; k.
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(v) Connected graph: A graph is called connected if for every two vertices v;w 2 V there is
a path from v to w.

(vi) Cycle: A cycle C is a connected subgraph such that every vertex has even degree in C .

(vii) Cycle space: Each cycle C can be identified with a vector x D x.C / 2 FE2 such that

xe WD

8̂<̂
: 1 if e 2 C

0 if e … C

indicates whether the edge e 2 E belongs to the cycle C . The cycle space C is the span
of
˚
x.C / j C is a cycle

	
in FE2 . Note that the sum of two cycles in the cycle space corre-

sponds to the symmetric difference of the edges.

(viii) Simple cycle: A cycle is called simple if every vertex of C has degree 2 in C .

(ix) Chordless cycle: A cycle C is called chordless if two vertices v;w 2 C form an edge inG
if and only they form an edge in C . This is equivalent to the statement that C is an induced
subgraph that is a cycle.

(x) Cycle sparsity: The cycle sparsity is the minimal number l such that a basis of the cycle
space consisting of chordless simple cycles of length at most l exists. Such a basis is called
shortest maximal cycle basis or short SMCB. If the cycle space is trivial we define the cycle
sparsity to be 2.

(xi) Pairings: Let S � V be a set of vertices. Then a pairing P of S is a subset of edges of
G.S/ such that two different edges of P are disjoint. The vertices contained in the edges
of P are denoted by V.P / and the set of all pairings by P.S/.

It is recommended to study the examples in Figure 2.1 and further ones in order to get more
familiar with the definitions above. To see that the above definition of the cycle sparsity is well
defined, we need to show that shortest maximal cycle bases exist. This might be well known to
people familiar with graph theory, but we will present an elementary proof here. The first part
of the statement, namely the existence of cycle basis consisting of simple cycles is known as
Veblen’s theorem and can be found in its original form in [Veb12], however we will rather follow
the approach in [BM11].

2.4 Proposition (Existence of SMCBs). There always exists a basis fx.C1/; : : : ; x.Ck/g
of the cycle space where C1; : : : ; Ck are chordless simple cycles.

Proof. First we prove that the set of simple cycles generates the whole cycle space which we
can then improve to show that the simple chordless cycles already generate the cycle space. A
shortest maximal cycle basis is then attained by successively dropping simple chordless cycles.
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Figure 2.1: Some examples of graphs and cycles. The first sketch shows a graph and the three
other ones subsgraphs of it where the edges not belonging to the subgraph are depicted dashed.
The first one is a symple chordless cycle, the second one a simple but not chordless cycle and the
last one is not a cycle at all.

We show that every cycle x.C / can be written as the sum of simple cycles x.C1/; : : : ; x.Ck/
where Ci � C are disjoint. This is equivalent to the statement that the edges of every cycle are
the disjoint union of the edges of simple cycles. To see that this is true, we fix a maximal non
intersecting path v0v1 � � � vk .1 Since vk has degree at least 2, there is an edge fvk; vkC1g such that
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Figure 2.2: Illustration of the search for a simple cycle in a graph with degrees greater than two.
Once a maximal non intersecting path like 12543 is selected, every continuation of the path – in
this case 2 or 1 – is already present in the path and therefore induces a simple cycle.

vkC1 ¤ vk�1. Since the path ismaximal, vkC1 has to agreewith one vertex vi 2 fv0; : : : ; vk�2g,
because otherwise we could add vkC1 to the path which is a contradiction to themaximality. Now
viviC1 � � � vkvi corresponds to a simple cycle C1 and C2 WD C n C1 is again a cycle. Thus, we
can write C as the disjoint union C D C1 [ C2 where C1 is a simple cycle. By repeating this
procedure we get the desired expression for C in terms of simple cycles.

To prove that the simple chordless cycles generate the cycle space we have to prove that we
can write every simple cycle x.C / as a sum of simple chordless cycles x.C1/; : : : ; x.Ck/. Let˚
fv0; v1g ; : : : ; fvk; v0g

	
be the edge set of C and assume that C is not chordless like in Figure

2.3, otherwise the statement would be trivial. Thus there is are indices i; j 2 f1; : : : ; kg such
that fvi ; vj g 2 E but fvi ; vj g … C . Let now C1 and C2 be the two cycles associated with the

1Non intersecting should be intuitive and means that vi ¤ vj for i ¤ j .
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Figure 2.3: The simple cycle 123451 on the left is not chordless but the symmetric difference of
the two simple chordless cycles 1231 and 13451 on the right.

paths
v0v1 � � � vivj vjC1 � � � vkv0 and viviC1 � � � vj�1vj vi :

Then we have x.C / D x.C1/C x.C2/. By iterating this procedure as long as the cycles are not
chordless the desired decomposition can be achieved in finitely many steps.

II.1.2 The solution of the principal minor assignment problem

Now we have all the graph theoretical prerequisites to show how one can reconstruct a matrix
with preassigned principal minors. However, the matrix that arises from this reconstruction is
not unique and thus we need to identify matrices with the same principal minors with each other.

2.5 Definition (Determinantal equivalence). Two symmetric matrices A;B 2 RN�N

are called determinantally equivalent if they have the same principal minors and wewriteA � B .

2.6 Remark. It can be shown that two matrices A;B 2 RN�N are determinantally equivalent
if and only if there is a diagonal matrixD with diagonal entries˙1 such thatA D DBD. This is
equivalent to the change of basis obtained by changing the signs of some basis elements. Since
we will not need this result, we refer to Theorem 4.1 in [Kul12] for a proof.

It is obvious that – given its principal minors – we can only hope to reconstruct a symmetric
matrix up to determinantal equivalence. However, this would be satisfactory, because determi-
nantally equivalent matrices are exactly those that give rise to the same DPP. On the other hand
it is obvious that the solution of the principle minor assignment problem will be unique up to
determinantal equivalence. Thus, the main work will be in showing that already the principal
minors up to a certain size uniquely specify this equivalence class and further we see how the
equivalence class can be constructed.
We notice – just like in the case of the 3 � 3 matrix – that the principal minors up to size two

immediately determine the diagonal and the absolute values of the off diagonal of K since we
have

Ki i D �fig and K2ij D Ki iKjj ��fi;jg:
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Thus it only remains to regain the signs sgn.Kij / of the off diagonal entries. For this we use the
following object.

2.7 The adjacency graph and sign function. The adjacency graphGK D .VK ; EK/ asso-
ciated withK consists of the vertex set f1; : : : ; N g and fi; j g form an edge if and only ifKij ¤ 0.
Further, we introduce weights on the edges. This means we consider a mapping w W EK ! R
and set

wij WD w.fi; j g/ WD sgn.Kij /

where we callwij the weight of the edge fi; j g. This graph together with the weights determines
the signs of the off diagonal elements, and so we are interested in how we can reconstruct the
weights from the principal minors. Finally we define the sign sgn.C / of a cycle C D .S;E/ to
be

sgn.C / WD
Y
e2E

we:

It will become important later to consider this sign function on the cycle space and thus we note
that this definition corresponds to

sgn.x.C // WD
Y
e2E

wx.C/ee :

Note that this is a group homomorphism from the cycle space C to f˙1g and therefore it is
uniquely determined by its values on a generator, for example on a shortest maximal cycle basis.

2.8 Proposition (Principal minors of simple chordless cycles). Let C D .S;E.S//

be a simple and chordless cycle. Then the principal minor of K with respect to S is given by

�S D
X

P2P.S/

.�1/jP j �
Y
fi;jg2P

K2ij �
Y

i…V.P /

Ki i C 2 � .�1/
jS jC1

�

Y
fi;jg2E.S/

Kij : (2.2)

Proof. Set k WD jS j. Then by the Leibniz formula we have

�S D
X
�2Sk

sgn.�/
Y
i2S

Ki�.i/ (2.3)

where Sk is the set of permutations of S . Note that the product is only non trivial if fi; �.i/g 2
E.S/ for all i 2 S . Since C is a simple cycle, those permutations consist exactly of the pairing
of S or the two shifts of the set S along the cycle in both directions. Those correspond exactly
to the summands in (2.2).
To see this, we fix a permutation � such that fi; �.i/g always forms an edge in .S;E.S//. We

note that every vertex i 2 S has two possible images which are exactly the endpoint of its two
edges, cf. Figure 2.4. Lets assume it is mapped to j 2 S , then j has again two possible images
under � namely i and a second vertex k 2 Y . If j 7! i , no other vertex can be mapped to i or
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Figure 2.4: An easy example for the two kinds of permutations of a chordless simple cycle that
maps vertices to neighbors.

j , however some other items can be swapped in the same way. The permutations of this form
correspond exactly to the pairings of S and are represented in the first sum in (2.2). If however
j is not mapped back to i but rather to its other neighbor k, then k can’t get mapped back to j
since � is injective. Thus, it has to be mapped to its other neighbor l 2 Y . A repetition of this
argument shows that this induces a cascade of mappings from vertices to their neighbors until i
is reached again. Since the cycle is simple this path exhausts the entire cycle. The factor 2 is due
to the fact that this shift of the indices can be done into either direction.

2.9 Proposition (Sign determines principal minors). The knowledge of all principal mi-
nors up to size two and the sign function

sgn W C ! f˙1g

completely determines all principal minors of K.

Proof. Let S � f1; : : : ; N g be arbitrary. We will again work with the expression (2.3) of the
principal minor �S and fix one permutation � . We can assume without loss of generality that
fi; �.i/g 2 EK because the product is trivial otherwise. Since we know the absolute values of
the off diagonal elements and the diagonal elements from the principal minors up to size two, it
suffices to express the sign Y

i2S

sgn.Ki�.i// (2.4)

through the sign function on the cycle space. For this we write � as the product of disjoint cycles2

� D �1 ı � � � ı �m

where �k permutesDk in cyclic fashion. The sign (2.4) is equal to the product ofY
i2Dk

sgn.Ki�k.i// (2.5)

2A permutation � 2 Sn is called a cycle if it maps some elements i1; : : : ; ik to each other in cyclic fashion, i.e.
il 7! ilC1; ik 7! i1 while fixing the other elements. Two cycles are called disjoint if the sets of elements that are
not fixed are disjoint. Elementary considerations show that any permutation is the composition of disjoint cycles.
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so it suffices to give expressions for those. Note that we could assume fi; �k.i/g 2 EK and
therefore Ck D .Dk; Ek/ with

Ek D
n
fi; �k.i/g j i 2 Dk

o
is a cycle and thus (2.5) is equal to sgn.Ck/.

2.10 Theorem (Solution of the PMAP). Let K 2 RN�N be a symmetric matrix and l be
the sparsity of its adjacency graph. Then the principal minors up to size l uniquely determine all
principal minors of K and therefore the matrix K up to determinantal equivalence.

Proof. In the light of the previous proposition it suffices to show that the sign function is uniquely
specified by the principal minors up to size l . Recall that the sign function is determined by its
values on a shortest maximal cycle basis, which consists by definition of simple chordless cycles
of length at most l . However, under the knowledge of the diagonal elements and the absolute
values of the off diagonal ones, the sign of those simple chordless cycle is uniquely determined
by the principal minors up to size l using the equality (2.2) .

2.11 Remark. One can even show that this result is optimal in the sense that if one only has
access to the principal minors up to size l � 1, then the equivalence class is not uniquely deter-
mined. To see this, we note that the sign function is not uniquely specified through the principal
minors up to size l � 1 and thus there is more than one extension of the sign function onto the
shortest maximal cycle basis. The equation (2.2) shows that those different extensions give rise
to different principal minors.

2.12 Construction of the equivalence class. Wehave shown that the determinantal equiv-
alence class of a symmetric matrix is uniquely specified by its principal minors up to size l . Now
we want to investigate how this equivalence class can be computed and we will see that we can
reduce this task to the solution of a system of linear equations over the finite field F2.
Let us assume that we have knowledge of the principal minors �S for every S � f1; : : : ; N g

with size at most l and we want to construct a matrix QK that is determinantally equivalent to K.
We have seen that we only need to reconstruct the signs of the off diagonal entries of K which
is equivalent to reconstructing the edge weights wij . To do this, we fix a shortest maximal cycle
basis fC1; : : : ; Cmg with vertex sets S1; : : : ; Sm. Let us now rewrite (2.2) in the form

Hk WD �Sk �
X

P2P.Sk/

.�1/jP j �
Y
fi;jg2P

K2ij �
Y

i…V.P /

Ki i D 2 � .�1/
jSk jC1 sgn.Ck/ �

Y
fi;jg2Ck

ˇ̌
Kij

ˇ̌
:

Given the principal minors, we can determine the value on the right side and comparing the signs
of both sides yields

.�1/jSk jC1 � sgn.Hk/ D sgn.Ck/ D
Y
fi;jg2Ck

wij
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which we seek to solve for w. However, this multiplicative equation is hard to solve and there-
fore we use the canonical group isomorphism � between f˙1g and f0; 1g to turn it into a linear
equation.3 Setting xij WD �.wij / we get that the condition above is equivalent to

bk WD �.sgn.Hk//C jSkj C 1 D
X
fi;jg2Ck

xij D .Ax/k in F2

where A is the matrix with the rows x.Ck/T . Now we can fix any such solution x 2 FE2 of

Ax D b (2.6)

and we know that at least one exists, namely the one given by xij D �.sgn.Kij //. Let now
wij WD �

�1.xij /, then it is straight forward to see that QK defined through

QKi i ´ �fig and QKij D wij �
q
QKi i QKjj ��fi;jg

is determinantally equivalent to K.

It shall be noted that there are algorithms with possibly better computational performance for
the construction of the determinantal equivalence class. For some examples of efficient algo-
rithms we refer to [UBMR17] and [RKT15].

II.1.3 Definition of the estimator and consistency

So far we have seen that the principal minors determine a symmetric matrix up to determinantal
equivalence. However, the empirical marginal densities do not in general need to be the princi-
pal minors of any symmetric matrix, in other words the empirical measures are not necessarily
determinantal. Therefore, the definition of the estimator is still not straight forward and we will
follow [UBMR17] for this and make the following assumption.

2.13 Assumption. Fix ˛ > 0 and assume from now on that

min
n ˇ̌
Kij

ˇ̌ ˇ̌
Kij ¤ 0

o
� ˛:

Note that such an ˛ can always be found, however it is not a priori known and hence we have
to postulate it.

2.14 Definition of the estimator. The straight forward estimators for the principal minors
are

O�S WD OPn.S � Y/ for S � f1; : : : ; N g :

3The isomorphism � has the explicit structure 1 7! 0;�1 7! 1.
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The resulting estimates for the diagonal elements and the squares of the off diagonals are

OKi i WD O�fig and OBij WD OKi i OKjj � O�fi;jg:

Next we will introduce an estimate OG D . OE; OV / for the adjacency graph and we choose the
edge set OE to consist of all sets fi; j g such that OBij � 1

2
˛2. We will see that this truncation leads

to the almost surely convergence of the graph OG towardsG. In analogy to the previous paragraph
2.12 we define f OC1; : : : ; OC Omg; OH1; : : : ; OH Om; OA and Ob exactly the same way. If there is a solution
Ox 2 FE2 to the linear equation

OA Ox D Ob; (2.7)

then we estimate the signs to be Owij WD ��1. Oxij / and define

OKij WD Owij

q
OBij :

If there is no such solution Ox then we simply set the signs of the off diagonal elements to be
positive, i.e. we define

OKij WD

q
OBij :

This choice is completely arbitrary, but we will see in the consistency result below that the prob-
ability for this case tends to zero as the sample size increases.

In order to talk about consistency of the estimator that we constructed above, it is necessary to
define a metric on the marginal kernels of DPPs. However, the usual operator norm is clearly not
right for this job, since we already know that we can only hope to reconstruct the determinantal
equivalence class but not the exact marginal kernel. Thus, we will work with the usual choice of
pseudometric if one has to deal with equivalence classes.

2.15 Pseudometric on the marginal kernels. Wedefine the distance between twomarginal
kernels A;B 2 RN�N through

d.A;B/ WD inf
C�A
kB � Ck1

where kAk1 WD max1�i;j�N
ˇ̌
Aij

ˇ̌
denotes the uniform norm on the space of matrices.

2.16 Theorem (Consistency). LetK be the marginal kernel of a DPP that satisfies Assump-
tion 2.13. Then we have for any " > 0

P
�
d. OK;K/ � "

�
! 1 for n!1:

Proof. We will keep the notations from the paragraphs 2.12 and 2.14. We have already seen in
the motivation of this section that the empirical measures converge almost surely which directly
implies

OKi i ! Ki i and OK2ij ! K2ij almost surely: (2.8)
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Since almost sure convergence implies convergence in probability we have

P. OG D GK/ D P
�
OK2ij � ˛

2=2 for Kij ¤ 0
�
! 1 for n!1:

In this case the two shortest cycle basis f OC1; : : : ; OC Okg and fC1; : : : ; Ckg can be chosen the same
and so OA andA agree. Because of (2.8) we also have OHk ! Hk almost surely and thus Obk ! bk

almost surely for all k. This yields

P
�
OA D A and Ob D b

�
! 1 for n!1: (2.9)

In this case the two linear quations (2.6) and (2.7) agree and therefore QK 2 RN�N defined
through QKij WD Owij

ˇ̌
Kij

ˇ̌
is determinantally equivalent to K. Further, we know that for ı > 0

P
�ˇ̌̌
OK2ij �

QK2ij

ˇ̌̌
< ı for all i; j

�
! 1 for n!1: (2.10)

If (2.9) and (2.10) hold then we have sgn. OKij / D sgn. QKij / as well as
ˇ̌̌
OK2ij �

QK2ij

ˇ̌̌
< ı and hence

d. OK;K/ � k OK � QKk1 < "

for ı small.

2.17 Remark (Speed of convergence). Although the result above states that the estimators
OK converges toK in probability, it doesn’t give any information about the speed of convergence.
This problem is addressed in [UBMR17], but it turns out that the convergence is very slow. For
example for the very moderate case ˛ D 0:4 and l D 3 one already needs more than 106 samples
to get some theoretical guarantees from their result. This is not due to careless estimates since
they show that you need very high sample sizes in order to ensure that the estimator is close to
the actual kernel with probability bigger than 2

3
. In practice such sample sizes can almost never

be achieved.

2.18 Computation of the estimator. Although we have already seen how the estimator
can be constructed theoretically, we will now touch on the implementation details for the actual
computation of the estimator. In fact the only two non trivial steps in the definition of the estimator
are the construction of a shortest maximal cycle basis and the solution of the linear equation (2.7)
over the finite field F2. There have been various algorithms proposed for the computation of a
shortest maximal cycle basis and we refer to the original work of Horton [Hor87] and a recent
improvement of his algorithm in [AIR10]. Further, we note that the linear equation can be solved
just like every linear equation over any field using Gaussian elimination.
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II.2 Maximum likelihood estimation

The method of maximum likelihood estimation (MLE) is a very well established procedure to
estimate parameters. The philosophy of MLE is that one selects the parameter under which the
given data would be the most likely to be observed and in order to present the general procedure
we follow the corresponding section in [Ric06].

Suppose we have given some candidates f .x1; : : : ; xnj�/ for the joint density of some random
variables X1; : : : ; Xn with respect to some reference measure

Qn
iD1 �.dxi / and we want to de-

cide which parameter � 2 � describes the realisations x1; : : : ; xn, which we will also call data
or observation, best. Hence, it is reasonable to pick � under which the observations x1; : : : ; xn
are the most likely. In other words we want to find the parameter � that maximises the density
f .x1; : : : ; xnj�/. If additionally the random variables are indepent and identically distributed,
their joint density factorises and thus we obtain

f .x1; : : : ; xnj�/ D

nY
iD1

f .xi j�/

where f .xj�/ is the density with respect to � of theXi . In practice it is often easier to maximise
the logarithm of the density

L.�/ D log
�
f .x1; : : : ; xnj�/

�
D

nX
iD1

log
�
f .xi j�/

�
since this transforms the product over functions into a sum. However, this is clearly equivalent
to maximising the density since the logarithm is strictly monotone.

2.19 Definition (Maximum likelihood estimator). Let � be a set, which we call the
parameter set and let

F D
n
f .�j�/ W X ! Œ0;1/

ˇ̌
� 2 �

o
be a family of probability densities with respect to some measure � on some measurable space
X . We call the function

L W � ! Œ�1; 0�; L.�/ WD
nX
iD1

log.f .xi j �//

the log likelihood function associated with the observations x1; : : : ; xn and its maximiser

O�n WD argmax
�2�

L.�/ (2.11)

the maximum likelihood estimator or short MLE.
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Very short reminder on optimisation

Since the calculation of the MLE is a maximisation task, it is suitable to review some general
properties of optimisation problems. For this let U � RM and f W U ! R be a function. In
practice the maximisation

Ox WD argmax
x2U

f .x/

will usually not be explicitly solvable and therefore one has to exploit numerical algorithms.

Those work particularly well if the function f is concave and possibly smooth and one power-
ful method is given by the so called gradient descent. To quickly explain its philosophy, we note
that rf points into the direction of the steepest ascent of the function f and thus an intuitive
approach the maximise f would be to follow the gradient, i.e. to take a solution  of the gradient
flow  0 D rf ./ and work out its limit. However, if the function is not concave one can not
even guarantee that the gradient flow reaches a local minimum, since one can construct examples
where  gets stuck in a critical point. However, in the concave case this suffices since critical
points and global minima agree for concave functions. The gradient descent is an algorithm de-
rived from this observation and is essentially a discretisations of the gradient flow meaning that
it iteratively takes small steps into the direction of the gradient and thus lowers the value of the
function. Some more sophisticated versions of gradient descent methods even consider higher
order derivatives and use the information they provide over the geometry of the graph. Generally
speaking those algorithms work extremely well even in high dimensions and thus their efficiency
and stability have been studied broadly and we refer to the extensive monograph [BV04]. All
together we note that concavity is an extremely favourable property for a function that shall be
maximised, which will be the log likelihood function later on.

A second property which is important in the existence theory of maximisers is the coercivity
of the function in the sense that

f .x/! �1 for jxj ! 1:

In fact every (upper semi-) continuous and coercive function defined on a closed set U � RM

attains its minimum. To see this one can fix x0 2 U and use the coercivity to obtain f < f .x0/

outside of a compact set K and thus the supremum of f agrees with the supremum of f over
K which it is attained. We will later introduce some abstract theory about the consistency of
estimators and for this we will need this result in a more general setting. However, the version
above is enough in the case of the maximum likelihood estimators for parameters of DPPs and
therefore readers that are not familiar with elementary notions of topology are advised to neglect
the following statement.
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2.20 Proposition (Existence of maximisers). LetX be a topological Hausdorff space and
f W X ! Œ�1;1/ be an upper semicontinuous function, i.e.

Lf .˛/ WD
˚
x 2 X j f .x/ � ˛

	
is closed for all ˛ 2 R. Further, we will assume that f is coercive, meaning that for any ˛ 2 R
the set Lf .˛/ is compact. Then f attains its maximum in at least one point, i.e. there is Ox 2 X
such that

f . Ox/ D sup
x2X

f .x/:

Proof. Let without loss of generality f be not identical to �1 because otherwise the statement
is trivial. Then we have

˛ WD sup
x2X

f .x/ > �1:

If we choose .˛n/ to be strictly increasing towards ˛, then we get Lf .˛nC1/ � Lf .˛n/ for all
n 2 N and further none of the sets Lf .˛n/ is empty. By the Cantor intersection theorem4 we get
that also the intersection is non empty, i.e there is

Ox 2
\
n2N

Lf .˛n/:

This implies

f . Ox/ � ˛n
n!1
����! ˛ D sup

x2X
f .x/:

II.2.1 Presentation of different models

Let in the following .Yn/n2N be a sequence of independent random variables distributed accord-
ing to a DPP. In order to follow the MLE approach, we need to express the density of the point
process with respect to some measure and we will do this by giving the elementary probabilities
which are nothing but the densities with respect to the counting measure. Thus, we will assume
that we are dealing withL-ensembles in this section. Since the observations .Yn/n2N are defined
on some common probability space which we will denote by .˝;P/, we will write

f .Aj�/ D
det.L.�/A/

det.L.�/C I /

for the elementary probabilities of the DPP that arises from the parameter � . We will now present
the maximum likelihood estimators for different parametric classes.

4A precise formulation can be found in the appendix.
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MLE of the elementary kernel L

The most intuitive parameter that one can estimate is the elementary kernel L itself since it
parametrises the entire class of L-ensembles.

2.21 Maximum likelihood estimator forL. Weconsider the parameter space� D RN�Nsym;C

of positive semi-definite symmetric matrices and the parametric family

F D
n
f .�jL/

ˇ̌
L 2 RN�Nsym;C

o
where f .AjL/ / det.LA/ is the elementary probability of DPP with elementary kernel L. We
seek to find the MLE

OLn WD argmax
L2RN�Nsym;C

L.L/:

The log likelihood function is now given by

L W RN�Nsym;C ! Œ�1; 0�; L 7! log

0@ nY
iD1

f .Yi jL/

1A :
Using (1.4) we get the expression

L.L/ D
nX
iD1

log
�
det.LYi /

�
� n log

�
det.LC I /

�
(2.12)

which is upper semi-continuous in L. Although the parametric family that arises from the ele-
mentary kernels L parametrises the whole class of L-ensembles and therefore gives a high vari-
ety of different associated L-ensembles, we will see that it makes the computation of the MLE
more complex. Therefore, we introduce smaller classes of L-ensembles, which will decrease the
flexibility of the model, but make computation more efficient.

MLE of the qualities

Unlike earlier we will not try to estimate the whole kernel L but only the qualities qi of the items
i 2 Y . More precisely we recall that we can parametrise the positive definite symmetric matrices
L using the quality diversity parametrisation

.q; �/ 7! 	.q; �/ D L where Lij D qi�Ti �j qj :

Nowwe fix a diversity feature matrix O�, that we will usually model according to some perceptions
we might have and set OSij WD �Ti �j . Now we aim to estimate the quality vector q 2 RN

C
instead

of the whole kernel L. This means that we optimise the likelihood function over a smaller set
of kernels, namely the ones of the form 	.q; O�/ for q 2 RN

C
. Obviously the maximal likelihood
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that can be achieved using this more restrictive model decreases since we consider less positive
definite matrices and we have

max
q2RN
C

L.	.q; O�// � max
L2RN�Nsym;C

L.L/:

2.22 Maximum likelihood estimator for the quality. This time we work with the pa-
rameter set � D RN

C
and the parametric family

F D
n
f .�jq/

ˇ̌
q 2 RNC

o
where f .Ajq/ / det.	.q; O�/A/ is the elementary probability of DPP with elementary kernel
	.q; O�/. We aim to find the MLE of the quality vector q 2 RN

C
, in other words we set

Oqn WD argmax
q2RN
C

L.q/

where we perceive the likelihood function as a function of q.

Using (1.5) we obtain the following expression for the single summands of the log likelihood
function

log

0@Y
j2Yi

q2j

1AC log.det. OSYi // � log

0@X
A�Y

Y
j2A

q2j det. OSA/

1A (2.13)

and note that it is upper semicontinuous.

Log linear model for the qualities

The motivation for restricting our ambitions of estimation to the qualities qi rather than the whole
elementary kernel L 2 RN�Nsym;C was to obtain a more tractable optimisation problem. Unfortu-
nately we can tell from (2.13) that the log likelihood still isn’t concave in q and in order to achieve
this, we will introduce the following model for the qualities.

2.23 Log linear model for the qualities and MLE. From now on we will fix vectors
fi 2 RM for i 2 Y and call them feature vectors. Further, we set

qi D exp
�
�T fi

�
for � 2 RM

and will only consider quality vectors q 2 RN
C

that have this form. To formulate the maximum
likelihood estimator for � we set � WD RM and consider the parametric family

F D
n
f .�j�/

ˇ̌
� 2 RM

o
where f .�j�/ is the density of the DPP with diversity feature matrix O� and the according qualities
qi D exp

�
1
2
�T fi

�
. Further, we will consider the maximum likelihood estimator

O�n WD argmax
�2RM

L.�/
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where we regard L again as function of � . We will assume that the feature vectors fi span the
whole space RM because otherwise we can simple work with the projections of the parameter �
onto the span of the feature vectors and obtain an equivalent model.

2.24 Remark. It shall be noted that although this log linear model seems to be a harsh restric-
tion, it isn’t a restriction at all, at least theoretically. If we takeM D N and choose fi to be the
unit vectors in RN , then this is just a logarithmic transformation of the parameters and thus the
maximal likelihood that can be achieved with this model does not change. In practice it will be
of interest to work with rather low dimensional parameters � , because if the ground set Y gets
large, optimisation in RN can be inefficient. In this case of course the maximal likelihood under
the optimal parameter may decrease, however, the approximation of the optimal parameter might
become possible again which justifies this sacrifice.

Again, we can express the log likelihood function explicitely and note that it is upper semi-
continuous. In fact, it takes the form

2 � �T
X
i2Y

fi C det. OSY / � log

0B@X
A�Y

exp

0@2 � �T X
i2A

fi

1A det. OSA/

1CA : (2.14)

II.2.2 Coercivity and existence of the maximum likelihood estimators

A priori it is not clear that the maximum likelihood estimators exist and we will actually see
that they do not exist in general. However not everything is lost since we will show that the
probability that they exist tends to one for increasing sample size. We will also shortly discuss a
second method how one can slightly adjust the concept of MLE to obtain the general existence
of the estimator which we will do by a regularisation term.

MLE of the qualities

The MLE Oqn does not exist for all realisations .Yn/n2N of .Yn/n2N. To see this, we suppose that
we have only one sample Y1 D Y which is the whole set. The higher the qualities of the items are,
the more likely this observation gets and therefore the maximum of the log likelihood function
– which is 0 in this case – is not obtained. This can also be made rigorous in the following
computation. For this we assume that det. OSY/ > 0 and that the qualities are constant, then the
log likelihood function takes the form

log
�
q2N det. OSY/

�
� log

0@X
A�Y

q2jAj det. OSA/

1A D log

 
q2N det. OSY/P

A�Y q
2jAj det. OSA/

!
q!1
����! 0:
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However this maximum is never attained, since for every L-ensemble we have PL.∅/ > 0 and
therefore

L.q/ D log
�
P
	.q; OS/

.Y/
�
< 0 for every q 2 RNC :

The thing that goeswrong in this case is, that under the observation of thewhole setY wewould
estimate a deterministic model that always selects the whole set, namely the DPP with marginal
kernel I . Since all of the eigenvalues are 1 in this case, this DPP is not aL ensemble and therefore
we can not describe it with the quality diversity decomposition. However if we assume that the
data is actually generated by a L-ensemble, then such a scenario becomes unlikely as the sample
size increases. We will fix this in the following result.

2.25 Proposition (Coercivity and existence of the MLE). Let Y1;Y2; : : : be a se-
quence of independent and identically distributed point processes that belong to the class of
L-ensembles. Then we have

P
�
Oqn 2 RNC exists

�
� P

�
L is coercive

� n!1
����! 1:

Proof. The first inequality follows from Proposition 2.20 since the log likelihood function is
upper semicontinuous. We will show thatL is coercive if one of the observations is the emptyset.
Then the claim follows from

P
�
L is coercive

�
� P

0@ n[
iD1

fYi D ∅g

1A D 1 � P

0@ n\
iD1

˚
Yi ¤ ∅

	1A
D 1 � P.Y1 ¤ ∅/n

n!1
����! 1

since we have P.Y1 ¤ ∅/ < 1 for every L-ensemble.
So let Y1; : : : ; Yn be some observations with Yi D ∅ for at least one i 2 f1; : : : ; ng and let

.qk/k2N � RN
C

be a sequence such that jqkj ! 1. Note that it suffices to show that every
subsequence of .qk/ contains a subsubsequence .ql/ such that

L.ql/! �1 for l !1:

Hence we fix a subsequence of .qk/ which we denote by .qk/ again in slightly abusive notation.
Let .ql/ be a subsequence of .qk/ such that one coordinate diverges to infinity, i.e.

qlj0
l!1
����!1 for one j0 2 f1; : : : ; N g :

The i -th summand of L takes the form

� log

0@X
A�Y

Y
j2A

.qlj /
2 det. OSA/

1A � � log
�
.qlj0/

2
�

l!1
����! �1



II.2. Maximum likelihood estimation 47

where we used OSfj0g D 1. Because the other summands are non positive this implies

L.ql/ l!1
����! �1

which we had to show.

2.26 Remark. The proof above should be read in the following way. The statement qlj0 !1
is equivalent to a model that would always select the item j0. However, since we have observed
the empty set, the observations would be impossible under this model and thus the log likelihood
function takes the value �1 for this model.

2.27 Proposition (Positivity of the MLE). Assume that Y1;Y2; : : : is a sequence of in-
dependent and identically distributed point processes that are distributed according to a L-
ensemble with strictly positive qualities. Then we have

P
�
Oqn 2 RNC exists and Oqn 2 .0;1/N

�
n!1
����! 1:

Proof. We have already seen that the probability that the MLE exists tends to one, so we only
have to show that the probability that the estimated qualities are strictly positive tends to one.
The approach to prove this is exactly the same than in the proof of existence. Indeed we note that
once j occurs in one of the observations Y1; : : : ; Yn we have L.q/ D �1 for every q 2 RN

C

with qj D 0. Therefore, we have . Oqn/j > 0 if j 2 Yi for at least one j 2 f1; : : : ; ng. Finally we
note that the probability that j occurs in the i -th sample is strictly positive since we have

P.j 2 Yi / � P.fj g D Yi / D q2j > 0:

MLE of the elementary kernel

We can quite easily adapt the proof for the existence of MLEs of the qualities to the case of MLEs
for the whole elementary kernel L.

2.28 Proposition (Coercivity and existence of MLE). Let Y1;Y2; : : : be asequence of
independent and identically distributed point processes that fall in the class of L-ensembles.
Then we have

P
�
OLn 2 RN�Nsym;C exists

�
� P

�
L is coercive

� n!1
����! 1:

Proof. Again it suffices to show L.L/ ! �1 for jLj ! 1 once we have observed the empty
set once. To see this, we use the quality diversity parametrisation

	 W RNC � SNN ! RN�Nsym;C; .q; �/ 7!
�
qi�

T
i �j qj

�
1�i;j�N

:



48 II. Point estimators and parametric models

Note that since 	 is continuous and SNN is bounded, j	.q; �/j ! 1 implies jqj ! 1. The
exact same calculations as in the previous proof show

L.L/ D L.	.q; �//! �1 for jLj ! 1:

Coercivity for the log linear model

We proceed just like before.

2.29 Proposition (Coercivity and existence of MLE). Assume that Y1;Y2; : : : is a se-
quence of independent and identically distributed point processes that are distributed according
to a L-ensemble with strictly positive qualities. Then we have

P
�
O�n 2 RM exists

�
� P

�
L is coercive as a function on U

�
n!1
����! 1:

Proof. Again we show that L is coercive on RM whenever we have observed the emptyset as
well as every item at least once. Let now .�k/k2N � U be a sequence such that j�kj ! 1.
Then there is at least one index i 2 f1; : : : ; N g and a subsequence .� l/l2N such that

f Ti �
l
!1 or f Ti �

l
! �1 for l !1

since otherwise all sequences
�
f Ti �

l
�
therefore also .� l/ would be bounded. However, this is

equivalent to
exp.f Ti �

l/!1 or exp.f Ti �
l/! 0 for l !1

andwe have seen in the proof of 2.27 that the log likelihood function tends to�1 in this case.

MLE with regularisation or MAP estimation

We have seen that the probability that the MLE exists tends to one if the sample size goes to
infinity. However, it might not be possible in practice to obtain larger data sets and therefore we
introduce a variation of maximum likelihood estimation which forces the existence of a max-
imiser. The idea is to add a coercive function to the log likelihood function such that the sum is
coercive and to optimise this sum.

2.30 Definition (MAP estimation). Let the setting be the same as for the normal maximum
likelihood estimation. Further we assume that we have given a functionR W � ! Œ�1; 0�which
we call the regulariser. The regularised MLE,maximum a posteriori probability or shortlyMAP
estimator5 is the maximiser

O�n WD argmax
�2�

�
L.�/CR.�/

�
:

5The term maximum posteriori probability will only properly make sense once we introduce the Bayesian setting in
the next chapter. We will see there that the regularised MLE is nothing but the mode of the posterior density.



II.2. Maximum likelihood estimation 49

2.31 Remark. (i) The regularised maximum likelihood approach is clearly an extension of
the classical approach since one can simply set R D 0.

(ii) If the regulariser is upper semi-continuous and coercive, then the MAP estimator for DPPs
always exists. In fact,L � 0 implies thatLCR is coercive and also upper semi-continuous
since the log likelihood functions are upper semi-continuous for all parametric models and
2.20 yields the assertion.

(iii) The regularised MLE and the MLE can agree but don’t necessarily agree.

(iv) The regulariser can be used to encode any prior conceptions one has. For example one can
use the regulariser to change the parameter set. Indeed, if we want to consider all matrices
RN�N as a parameter space instead of only the symmetric positive semi-definite matrices,
we can simply set

R.L/ WD

8̂<̂
: 0 if L symmetric and positive semi-definite

�1 otherwise

which is equivalent to the MLE on the smaller parameter space. The advantage of RN�N

as a parameter space is that one can make use of pre-implemented optimisation algorithms,
since they are usually defined over real vector spaces.

(v) We will see in the last chapter how different choices of the regulariser affect the estimator.

II.2.3 Consistency of the maximum likelihood estimators

We will now turns towards the question of consistency of the maximum likelihood estimators
introduced earlier in this section. For this we will first give a formal proof of the consistency of
the MLE and then present a rather general framework that will allow us to turn the formal proof
into a rigorous one.

2.32 Formal proof of consistency. We will consider a general MLE like in (2.11) and we
will assume that the observations .Xn/ are independent and have density f .xj�0/ with respect
to the reference measure �. By the law of large number we have

1

n
L.�/ D

1

n

nX
iD1

log.f .Xi j�//
n!1
����! E

�
log.f .X j�//

�
: (2.15)

Hence the maximiser of the left hand side should be close to the maximiser of the right hand.
Differentiating the right hand side yields

@�E
�
log.f .X j�//

�
D E

�
@� log.f .X j�//

�
D E

�
@�f .X j�/

f .X j�/

�
D

ˆ
@�f .xj�/

f .xj�/
f .xj�0/�.dx/:
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Evaluating this at � D �0 givesˆ
@�f .xj�/�.dx/ D @�

ˆ
f .xj�/�.dx/ D @� .1/ D 0:

Hence �0 is a critical point and under mild conditions the right hand side of (2.15) is concave
and thus �0 is the unique maximiser. In conclusion the estimator O� should be close to �0.

Although the rough structure of the rigorous proof is present in the argument above it is highly
formal. For example we argue that if a sequence .fn/n2N of functions converges towards f
pointwise, then the maximisers .xn/n2N should converge to the maximiser x of f . The major
tool to make this rigorous will be to use some kind of uniform convergence. Namely, we have
the following result where we will omit the proof since it is very easy and we give a similar but
stronger version of it later.

2.33 Lemma (Swapping limit and maximisation). Let .fn/n2N be a sequence of real func-
tions on a compact space with maximisers .xn/n2N that are bounded from above and converge
uniformly towards f . Further, assume that f is continuous and has a unique maximum in x0.
Then we have xn ! x0 for n!1.

Unfortunately the convergence in (2.15) does only hold uniformly on a compact set K � �.
To deal with this, we will argue that the maximisers .xn/ lie in this compact set K for large n.
We will do this in a general setup in the next paragraph.

A general consistency result for extremal estimators

We provide a general consistency result for a rather broad class of estimators which is taken from
[NM94] and slightly adapted to our needs. Although it would be possible to prove the consistency
of the MLEs directly we present this general procedure since it clearly highlights the theoretical
arguments and can therefore easily be adjusted to other cases.

2.34 Setting. Let in the following� be a topological Hausdorff space and Fn W � ! Œ�1;1/

be a sequence of random functions with maximisers

O�n WD argmax
�2�

Fn.�/:

If no maximiser exists, we choose O�n 2 � arbitrary. Further, let F W � ! Œ�1;1/ be a
deterministic function with maximiser �0. The maximisers O�n are called extremal estimators
since they are extremal points of the functions Fn.

We now investigate whether the extremal estimators converge to the maximiser �0.

2.35 Theorem (Consistency of extremal estimators). Let the setting be as above and
assume that the following conditions hold.
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(i) Assume that there is "0 > 0 and a compact setK0 containing �0, such that with probability
tending to one

Fn.�/ � F.�0/ � "0 for all � … K0: (2.16)

(ii) Let Fn converge to F uniformly on K0 in probability, i.e. for any " > 0 we have with
probability tending to oneˇ̌

Fn.�/ � F.�/
ˇ̌
� " for all � 2 K0: (2.17)

(iii) Let F have a unique maximum at �0 2 �.

(iv) Assume that F is upper semicontinuous in the sense that˚
� 2 � j F.�/ � ˛

	
� �

is closed for all ˛ 2 R.

(v) With probability tending to one Fn admits a maximiser.

Then we have O�n ! �0 in probability, i.e.

P
�
O�n 2 U

�
n!1
����! 1

for any open subset U � � containing �0.

Proof. Note that it suffices to show O�n 2 U whenever (2.16) and (2.17) hold and Fn admits a
maximiser. From here on the proof is of purely analytic content.

Fix now an open set U � � that contains �0. Choosing " < "0 in (ii) and using (i) yields

Fn.�0/ � F.�0/ � " > F.�0/ � "0 � Fn.�/ for all � … K0:

Hence the maximum of Fn is attained inK0 and we have O�n 2 K0. Thus ifK0 � U we are done.
If this is not the case F attains its maximum ˛ on K0 n U because F is upper semicontinuous
and K0 n U is compact. Further, (iii) implies ˛ < F.�0/ and thus we have

K0 \
n
� 2 � j F.�/ > ˛

o
� U:

So in order to show O�n 2 U , it suffices to show F. O�n/ > ˛. However, (ii) implies

F. O�n/ � Fn. O�n/ � " � Fn.�0/ � " � F.�0/ � 2" > ˛

for " small enough.
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2.36 Remark. The theorem above might seem artificially general at first, but one has a high
interest in consistency results at least for extremal estimators in metric spaces. Those can be used
to deduce the consistency for the estimation of a function in a function space rather than a finite
dimensional parameter.

If we want to apply the previous result to the case of maximum likelihood estimation we need
to set

Fn.�/ WD
1

n

nX
iD1

log.f .Xi j�//:

Note that the factor 1
n
does not change the maximum. However, (2.15) already gives the almost

surely pointwise limit of those functions and if condition (ii) of the previous statement should
hold, we have to define

F.�/ WD E
�
log.f .X j�//

�
:

The quantity F is – up to the sign – known as the entropy and plays an important role in many
different fields, for example statistical mechanics, applied statistics and information theory. For
further reading we refer to [ME11], [Mac03], [Vol09] and [Gra90].

Information inequality and locally uniform convergence

The second and third requirement of the previous result can be proved in a general setting and
without quantitative assumption and we adapt an argument from [NM94] to fit our needs. In
order to do this we will work with the following assumptions.

2.37 Setting. Let in the following � be a set and let

F D
n
f .�j�/ W X ! Œ0;1/

ˇ̌
� 2 �

o
be a family of probability densities on some measurable space X with respect to some measure
�. Further, fix �0 2 � and let X be distributed according to f .�j�0/d�, hence we have

E
�
h.X/

�
D

ˆ
h.x/f .xj�0/�.dx/:

Let .Xn/n2N be a sequence of independent random variables distributed according to f .�j�0/d�.
Finally define

Fn.�/ WD
1

n

nX
iD1

log.f .Xi j�// and F.�/ WD E
�
log.f .X j�//

�
:

2.38 Proposition (Information inequality). Let the setting be as above and assume that
the parameter �0 2 � is identifiable, i.e. we have f .�j�/ ¤ f .�j�0/ whenever � ¤ �0. Let
further

sup
x2X ;�2�

f .xj�/ <1 and F.�0/ > �1:
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Then the entropy
F.�/ D E

�
log.f .X j�//

�
has a unique maximum in �0.

Proof. Let � ¤ �0, then we either have F.�/ D �1 < F.�0/ or

F.�/ D E
�
log.f .X j�//

�
> �1: (2.18)

In this case we want to exploit the strict Jensen inequality (cf. [LC06]) that yields for any positive
random variable Y with finite expectation that is not constant

E
�
log.Y /

�
< log.EŒY �/:

We set Y WD f .X j�/
f .X j�0/

. This is positive f .�j�0/d� almost everywhere because otherwise (2.18)
could not hold. Since �0 is identifiable, the random variable Y is not constant and we will see in
the following computation that the expectation is finite. Now we obtain

F.�/ � F.�0/ D E
�
log.f .X j�//

�
� E

�
log.f .X j�0//

�
D E

"
log

�
f .X j�/

f .X j�0/

�#

< log

 
E
�
f .X j�/

f .X j�0/

�!
D log

�ˆ
f .xj�/�.dx/

�
D 0:

Next we take care of the second requirement of the consistency result. Namely we will show
that the functions Fn associated with the MLE almost surely converge to F locally uniformly
under fairly mild conditions. For this we modify the proof of a more general convergence result
in [Tau85].

2.39 Lemma (Locally uniform convergence). Let the setting be as above, but let � be a
metric space and let K � � be compact such that the following conditions hold.

(i) Let

E

"
sup
�2K

ˇ̌
log.f .X j�//

ˇ̌#
<1:

(ii) For every � 2 K we have log.f .�; // ! log.f .�j�// almost surely with respect to
f .�j�0/d� for  ! � .

Then we almost surely have Fn ! F uniformly on K, i.e. almost surely

sup
�2K

ˇ̌
Fn.�/ � F.�/

ˇ̌ n!1
����! 0:
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Proof. Fix " > 0 and define for x 2 X and � > 0

u.x; �; �/ WD sup
d.;�/��

ˇ̌
log.f .xj// � log.f .xj�//

ˇ̌ �!0
���! 0

almost surely for � fixed where we used condition (ii).
This in combination with (i) and the dominated convergence theorem implies that the conver-

gence also holds in expectation and therefore we have

E
�
u.X; �; �/

�
� " for � � ı.�/:

The open balls Bı.�/.�/ with center � and radius ı.�/ cover the compact set K and hence we
can select a finite subcover

K �

m[
kD1

Bı.�k/.�k/:

Further we set
�k WD E

�
u.X; �k; ı.�k//

�
� ":

Let � 2 K and choose k such that � 2 Bı.�k/.�k/, then we can conclude

jFn.�/ � F.�/j �
1

n

nX
iD1

ˇ̌
log.f .Xi j�// � log.f .Xi j�k//

ˇ̌
C

ˇ̌̌̌
ˇ̌1n nX

iD1

log.f .Xi j�k// � F.�k/

ˇ̌̌̌
ˇ̌C ˇ̌F.�k/ � F.�/ˇ̌

�

0@1
n

nX
iD1

u.Xi ; �k; ı.�k// � �k

1AC �k C 2"
� 4"

almost surely for n � N."/ where we used the strong law of large numbers twice andˇ̌
F.�k/ � F.�/

ˇ̌
� E

�
u.X; �k; ı.�k//

�
� ":

Consistency of the MLEs for the quality and elementary kernel

In this part we will – for the first time – make use of the specific structure of the model. Since we
have already taken care of the conditions (ii)-(v) of the general consistency result, we dedicate
ourselves to the first requirement of Theorem 2.35. For this we keep the setting of the previous
section although we now consider the case that

F D
n
f .�j�/ W 2Y ! Œ0;1/ j � 2 �

o
is one of the parametric families for the L-ensembles introduced in II.2.1. Further, we denote a
realisation of a DPP by Y like earlier.
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2.40 Lemma (Control outside of a compact set). The requirement (i) from Theorem
2.35 is satisfied for the three kinds of parametric families for the kernel estimation. Further, the
compact set K0 can be chosen as follows. Let A be the family of subsets A � Y with positive
probability f .Aj�0/ > 0 and choose c.A/ > 0 such that

�c.A/ <
2 � F.�0/

f .Aj�0/
:

Then we set
K0 WD

n
� 2 �

ˇ̌
log.f .Aj�// � �c.A/ for all A 2 A

o
:

Proof. At first we note that F.�0/ > �1. Let now

OPn WD
1

n

nX
iD1

ıYi

be the empirical measure. We have by the law of large numbers

P
�
OPn.A/ �

f .Aj�0/

2

�
n!1
����! 1

and so we can assume OPn.A/ � f .Aj�0/
2

, since we are only interested in proving a statement with
probability tending to one. For A 2 A we note that

KA WD
n
� 2 �

ˇ̌
log.f .Aj�// � �c.A/

o
is closed since f .Aj�/ is upper semicontinuous. Further, KA is compact for A D ∅ 2 A since
log.f .∅j�// is coercive in � which has been shown in the coercivity proofs earlier in this chapter.
Further, it contains �0 as

log.f .Aj�0// � 2 � log.f .Aj�0// > �c.A/

because f .Aj�/ � 1 and

F.�0/

f .Aj�0/
D

P
B�Y f .Bj�0/ log.f .Bj�0//

f .Aj�0/
� log.f .Aj�0//:

Now
K0 D

\
A2A

KA

is compact because K∅ is compact. Fix � … K0, lets say � … KA, then we get

Fn.�/ D

ˆ
log.f .xj�// OPn.dx/ D

X
B2A

OPn.B/ � log.f .Bj�// � OPn.A/ � log.f .Aj�//

< �
f .Aj�0/

2
� c.A/ < F.�0/:
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Now we have all the auxiliary results to prove the desired consistency result.

2.41 Theorem (Consistency). (i) The maximum likelihood estimator OLn for the elemen-
tary kernel is consistent. Namely if the observations .Yn/ follow the law of a L-ensemble
with elementary kernel L0, then we have

P
�
d. OLn; L0/ � "

�
n!1
����! 1 for all " > 0:

(ii) The maximum likelihood estimator Oqn for the quality vector is consistent. Namely if the
observations .Yn/ follow the law of a L-ensemble with kernel 	.q0; O�/, then we have

P
� Oqn � q0 � "� n!1

����! 1 for all " > 0:

(iii) Suppose that the observations .Yn/ follow the law of a L-ensemble with kernel 	.p0; OS/
where .p0/i D exp.�T0 fi /. Then we have

P
� O�n � �0 � "� n!1

����! 1 for all " > 0:

Proof. We will only sketch the main parts of the proof of the second statement, since all other
arguments will be analogue and therefore redundant.
Obviously we want to exploit the machinery we have introduced and thus we will check the

requirements of Theorem 2.35. First we note that (v) holds because of the section of the existence
of the maximum likelihood estimators.
We can express the entropy function

F.q/ D E
�
log.f .Yjq//

�
D

X
A�Y

log.f .Ajq//f .Ajq0/ (2.19)

where the elementary probabilities are given by

f .Ajq/ D

Q
i2A q

2
i det. OSA/P

B�Y
Q
i2B q

2
i det. OSB/

(2.20)

which is continuous in q. Hence, the entropy function F is upper semicontinuous and thus
condition (iv) holds.

To check that (iii) holds, we will use the information inequality 2.38. First we note that because
of

f .fig jq/ / q2i

the parameter q0 is identifiable and further we have

sup
A�Y;q2RN

C

f .Ajq/ � 1
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since the densities are elementary probabilities. Finally F.q0/ > �1 is clear from (2.19) and
hence the third requirement is satisfied.
Since the previous lemma already takes care of condition (i) it suffices to show the second

condition for which we will use 2.39. Hence, it remains to check the two conditions of this
lemma, but the second one – the continuity condition – obviously holds as can be seen from
(2.20). To see that the first one also holds, we note that forA � Y with f .Ajq0/ > 0 and q 2 K0
we have

0 � log.f .Ajq// � �c.A/ > �1:

Hence the random variable
sup
q2K0

ˇ̌
log.f .Yjq//

ˇ̌
is almost surely finite with respect to f .�jq0/d� and since the probability space 2Y is finite, the
second condition holds.

2.42 Remark. Obviously in the proof of the consistency of the whole elementary kernelL one
runs into the problem of unidentifiability. This is why one has to identify the parameters with
each other that give rise to the same elementary probabilities which is just the determinantal
equivalence. Once this is done, the proof follows analogously.

Consistency of regularised MLE

One can not make a general statement about the consistency of regularised MLE. Since it is
straight forward to construct examples where the regularised MLE is not consistent. For exam-
ple if the regulariser R is equal to �1 on a neighborhood of �0, then none of the regularised
estimators will lie in this neighborhood and hence the estimations will not converge towards �0.
Nevertheless, this scenario can be avoided with one property of the regulariser. If we recall

that the proof of the consistency of the MLE relied on the observation
1

n
� Ln.�/

n!1
����! E

�
log.f .X j�//

�
:

and an application of the consistency result for extremal estimators. In the case of the regularised
MLE, we no longer maximise the functions Ln but the sum Ln C R and in order to obtain a
consistent estimator we need to ensure that the convergence

1

n
� Ln.�/C

1

n
�R.�/

n!1
����! E

�
log.f .X j�//

�
holds with the same uniformity which we will do now.

2.43 Setting. We work with one of the three parametric models for DPPs presented above and
denote the parameter space by� and the elementary kernel arising from � 2 � byL.�/. Further
we will assume that we have a regulariser R W � ! Œ�1; 0� that is upper semicontinuous.
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2.44 Theorem (Consistency of MAP estimation). Assume that the sequence of obser-
vations .Yn/n2N are independent and distributed according to a L-ensemble with elementary
kernel L.�0/. Let further K � � be a compact set containing �0 such that R is bounded on K.
Then the maximum a posteriori estimator arising from the regulariser R is consistent.

Proof. We only have to check how the regulariserR influences the requirements (i)-(v) of Theo-
rem 2.35. In fact it doesn’t have any influence on the assumptions (iii) and (iv). Further (i) stays
valid since the regulariser is non positive and (v) since it is non positive and upper semicontinu-
ous. Hence it remains to validate (ii). For this we reduce the compact set K0 to K \K0 which
is compact again. On this set the contribution 1

n
� R goes uniformly to zero which yields the

assertion.

2.45 Remark. The consistency result above is stated for a rather broad class of regularisers.
For instance, all quadratic regulariser – which correspond exactly to Gaussian priors as we will
see later – fall into this class. Further it covers every regulariser that is equal to �1 on a set of
impossible parameters. This can be used to exclude non symmetric or non positive semidefinite
matrices from the estimation process if one wants to work with the easier parameter set RN�N

instead of RN�Nsym;C.

II.2.4 Approximation of the MLE

Having discussed the theoretical properties and guarantees on convergence of the MLE we will
now turn towards the question of computability. In particular we will see that the MLE for the
whole kernel can not be computed in an efficient way which justifies the use of smaller parametric
models like the log linear model.

Likelihood maximisation for the elementary kernel L

We recall that the log likelihood function for the elementary kernel is given by

L.L/ D
nX
iD1

log
�
det.LYi /

�
� n log

�
det.LC I /

�
: (2.21)

This is a smooth function since the determinants of the submatrices are polynomials in the entries
of L and the composition of those with the smooth function log W .0;1/ ! R is smooth. This
property makes it possible to use gradient methods for the maximisation of L, but they face the
problem that L is non concave and thus those algorithms will generally not converge to a global
maximiser. To see that the log linear likelihood function is not concave, we may consider the
span

˚
qI j q 2 R

	
of the identity matrix. On this subspace L takes the form

L.qI / D
nX
iD1

log.qjYi j/ � n log..1C q/N / D
nX
iD1

jYi j log.q/ � nN log.1C q/



II.2. Maximum likelihood estimation 59

which is not concave in general. Unfortunately there are no algorithms that can approximate the
global maximum of a non concave function [Vav95] and it also has been conjectured in [Kul12]
that no such algorithm exists for the log likelihood of the elementary kernel. Nevertheless one
can still use optimisation techniques to obtain local maximisers of the log likelihood and indeed
[MS15] proposes a fixed point iteration to do this.
In fact, the non concavity can be seen without any computations at all. If we have a maximiser

L of the log likelihood function and take another matrix QL that is determinantally equivalent,
then obviously the log likelihood of the two kernels agree. Hence, we expect a discrete set of
maximisers which is only possible ifL is not concave. However it is not straight forward whether
there are some critical points that are different to the global maximisers. If this is not the case,
common optimisation techniques can be exploit since they will converge to a critical point.
Similar arguments show that the log likelihood function for the qualities is non concave and

therefore hard to maximise.

Computation for the log linear model

The motivation to introduce the log linear model was to obtain a log likelihood function that is
easier to maximise in practice. We will now see that this is indeed the case and recall that the
individual terms of the log likelihood are given by

2 � �T
X
i2Y

fi C det. OSY / � log

0B@X
A�Y

exp

0@2 � �T X
i2A

fi

1A det. OSA/

1CA : (2.22)

The first two terms are linear in � and constant and thus concave. To see that the last expression
is also concave we introduce the notion of log concavity and give a general result.

2.46 Definition (Log concavity). We call a function f log concave, log convex or log
(affine) linear if log.f / has the respective property.

2.47 Proposition (Additivity of log concavity). The sum of log convex functions is again
log convex.

Proof. Let f and g be log convex and thus F WD log.f / and G WD log.g/ are convex. We will
consider the function

H W R2 ! R; .x; y/ 7! log.ex C ey/

which is increasing both coordinates. Further, we note that log.f Cg/ D H.F;G/ and hence it
suffices to show thatH is convex which we do by noting that the Hessian matrix

D2H.x; y/ D .ex C ey/2 �

0@ exey �exey

�exey exey

1A
is positive semi-definite by Sylvester’s criterion.
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The summands inside the logarithm in (2.22) are log convex, in fact even log affine linear since
their logarithm is equal to

2 � �T
X
i2A

fi C log.det. OSA//:

Hence we obtain as an immediate consequence that the whole expression (2.22) and therefore
the log likelihood function is concave which we will fix in a separate statement.

2.48 Corollary (Concavity of the likelihood function). Under the log linear model
for the qualities, the log likelihood function is concave in the log linearity parameter � 2 RM .

This result together with the coercivity – which holds with probability tending to one – ensures
that the MLE for the log linearity constant of the quality can be computed efficiently. Further,
such optimisation algorithms are pre-implemented in most major programming languages and
software environments like Mathematica, MATLAB and R. For theoretical guarantees and algo-
rithmic details of those methods we refer once again to [BV04].

Although being easily available, those methods have the drawback that they need to approxi-
mate the gradient of the log likelihood function. However, the gradient can be expressed analyt-
ically by differentiating (2.22) and we obtain

2 �
X
i2Y

fi � 2 �

P
A�Y exp

�
2 � �T

P
i2A fi

�P
i2A fi det. OSA/P

A�Y exp
�
2 � �T

P
i2A fi

�
det. OSA/

D 2 �
X
i2Y

fi � 2 �
X
A�Y

f .Aj�/
X
i2A

fi

D 2 �
X
i2Y

fi � 2 �
X
i2Y

fi
X
A�fig

f .Aj�/

D 2 �
X
i2Y

fi � 2 �
X
i2Y

fiK.�/i i :

where K.�/ is the marginal kernel arising from the parameter � . This expression can be used
in a direct implementation of the gradient method for the approximation of the MLE for the log
linearity constant.

II.2.5 Further learning approaches

We will quickly touch on two approaches of parameter estimation that have proven to work very
well for certain real world examples. Further, we propose a different parametric model that would
allow the simultaneous estimation of the qualities and the similarity kernel, but it remains to be
seen whether this circumvents the problems associated with the maximum likelihood estimation
of the whole kernel L.
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Learning for conditional DPPs

The estimation of the log linearity constant of conditional DPPs has been used in [KT12a] to ob-
tain extractive summaries of news articles. In fact the procedure is analogue to the one presented
for the estimation of the log linearity constant of normal DPPs, apart from the fact that one has
to model a family of feature vectors

fi .X/ 2 RM for i 2 Y.X/;X 2 X :

We will quickly discuss how this could be done in the case of the DPP on a two dimensional
grid. Maybe we do not want to restrict ourselves to one grid size and hence consider the condi-
tional DPP

X D N; Y.n/ D n�1 f0; : : : ; ng2 for n 2 N:

Now we can model the similarity feature vectors �i .n/ analogously to the case where we only
considered one grid and impose the following log linear model for the qualities

qi .n/ D exp
�
�T fi .n/

�
for i 2 Y.n/:

The diversity feaure vectors are given just like earlier by

fi .n/ D

0@ki �mk
1

1A for i 2 Y.n/

wherem is again the centre of the unit square. Now the estimation can be carried out just like in
the case of an ordinary DPP and for the same reason this will be consistent.

However, it shall be noted that the modelling of the diversity feature vectors can be far more
complicated in more complex real world applications.

Estimating the mixture coefficients of k-DPPs

For this approach we first fix symmetric positive semi-definite matrices L1; : : : ; LM . We as-
sume now that the point process we are trying to describe is the mixture of the DPPs PLm with
elementary kernel Lm and aim to estimate the mixing coefficients of

P� D
MX
mD1

�mPLm where �m 2 Œ0; 1� and
MX
mD1

�m D 1:

This approach has been taken to create a diverse selection of pictures returned by an image
search (cf. [KT11]). In this case one wants to fix the number of returned images up front, hence
it is reasonable to work with k-DPPs instead of DPPs. The mixture coefficients were estimated
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based on a data set
˚
.Y Ct ; Y

�
t /
	
tD1;:::;n

where Y Ct was chosen by a human to be more diverse
than Y �t . Now � was optimised such that

P� .Y Ct / > P� .Y �t /

for as many t 2 f1; : : : ; ng as possible.6

Learning the repulsiveness of a DPP

The estimation of the qualities, or the according log linearity constant have the major drawback
that a significant part of the DPP – the repulsive structure – has to be modelled completely.
We have seen so far that it is in practice not possible to estimate the whole repellent structure,
namely the similarity kernel as this would lead to a hard optimisation problem. However, we will
propose a parametrisation of the similarity kernel by only one parameter, that might have better
computational properties.
For this we follow 1.7 to model the similarity over the distance to some reference points with

respect to a Gaussian kernel just like in the toy example presented so far. This means we choose

.�i /r / exp

 
�
d.i; r/2

�

!
for r 2 R; i 2 Y :

We have seen in the example of the DPP on a line that the parameter � has a direct influence on
the strength of the repulsions of the DPP. The estimation of not only the log linearity constant �
but also the repulsiveness parameter � could now result in a significantly increased accuracy of
the resulting model.
It is not immediately clear what properties the log likelihood has in this case, but it would be

– a rather pleasant – surprise if it was coercive. Nevertheless, it might have nice properties, like
a unique critical point that could allow the use of standard optimisation techniques. A different
approach would be to optimise the two parameters � and � in an adaptive scheme, i.e. one
after another and repeat this iteratively. It remains to be seen whether such approaches work
theoretically and whether they give any improved results in practice.

6For people familiar with binary decision problems it should be mentioned that this was done using the logistic loss.



Chapter III

Bayesian parameter estimation andMarkov
chain Monte Carlo methods

So far we have seen two different estimation techniques for the parameters of DPPs. Although
we proved that they provide reasonable estimators in the sense that they are consistent, they have
some drawbacks. For example the MLEs for the different parameters do not exist in general, let
alone that they are impossible to compute in practice. Further all of the estimators presented so
far are point estimators, i.e. they return a single value for the desired parameter. Obviously this
does not allow to capture any uncertainties that the estimation of the parameter has. Those are
some reasons to consider the Bayesian approach of parameter estimation where the goal is to
give a distribution – called the posterior – of the parameter that should be estimated instead of a
single value. This can also help to overcome some – maybe even all of the problems mentioned
above.

At first we will present the general concept of Bayesian parameter estimation and will then
turn towards the question of computability of the posterior distribution. For this we will follow
the approach of [AFAT14] and turn towards the popular Markov chain Monte Carlo (MCMC)
methods. We quickly explain their philosophy and how they can be used to approximate the
posterior distribution of the parameter one wishes to estimate.

III.1 Bayesian approach to parameter estimation

For the introduction of the general Bayesian setup we pursue like in [Ric06]. Just like in the
case of maximum likelihood estimation we want to estimate a parameter � 2 � based on some
realisations x D .x1; : : : ; xn/ of random variables X D .X1; : : : ; Xn/. This time, however, we
are not interested in returning a single value � because this would be a vast simplification of the
stochastic nature of the estimator. We rather want to obtain a probability distribution over whole
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parameter space� that indicates how likely the parameters are to have caused the observed data.
In order to present the procedure we will introduce the frame we will work in.

3.1 Setting. Let � be a measurable space and � be a measure on �. Let f� W � ! Œ0;1� be
a probability density with respect to �, i.e.

ˆ

�

f�.�/�.d�/ D 1

which we will call the prior distribution of the parameter � .1 Further let

F D
n
fX j�.�j�/

ˇ̌
� 2 �

o
by a family of probability densities with respect to �n WD

Qn
iD1 �.dxi /.

Usually the prior distribution will encode some perceptions or prior knowledge we might have
of the parameter. For example if we are trying to estimate a physical constant that we know has to
be positive, then it is reasonable to select a prior that has its whole mass on the positive real line.
However, there is no clear set of rules how one can select a suitable prior to a given problem.

The density fX j�.xj�/ describes how likely the observations are under the parameter � and
we want to find an expression of how likely the parameter � is under the observations x. In order
to obtain this, we will work with the joint density

fX;�.x; �/ D fX j�.xj�/f�.�/ with respect to �n � �

and condition this onto x. This yields

f�jX .� jx/ D
fX;�.x; �/´

� fX;�.x; �/�.d�/
D

fX j�.xj�/f�.�/´
� fX;�.x; �/�.d�/

: (3.1)

3.2 Definition (Posterior distribution). The density f�jX is called the posterior distri-
bution of the parameter � given the data x. Further we call the normalisation constant

f .xjF/ WD
ˆ
�

fX;�.x; �/�.d�/

the total probability of the data x under the model F .

First we will convince ourselves that the approach of calculating a posterior distribution is a
generalisation of the MLE in a lot of cases.

1The requirement of f being a probability density can easily be loosened. In fact if it has finite integral it is obvious
that the normalisation cancels in the definition (3.1) of the posterior and even if it has infinite integral, (3.1) might
still give a probability density.
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3.3 Comparison to MLE. Maybe one feels slightly uncomfortable with the need to choose a
prior distribution and it turns out that this is in fact a difficult step that has to be taken with a
certain amount of care. However, we could pretend for one moment to be completely ignorant
in the sense that we do not know anything about the parameter and hence we don’t feel in the
position to propose a reasonable prior. Then we could simply choose the uniform distribution as
a prior – given it exists2 – and would obtain

f�jX .� jx/ / fX j�.xj�/:

Hence we can regain the MLE from our posterior distribution since it is just the mode, i.e. the
maximiser of the posterior density. This relation to the MLE can be seen in Figure 3.1. Hence,
the Bayesian approach is a more general tool than MLE and allows to capture the randomness of
the parameter � . This is desirable since we have seen that the mode is not always a very typical
outcome of a random variable.

Figure 3.1: Approximated posterior density of the two dimensional log linearity constant of a two
dimensional DPP with a uniform distribution as a prior. The MLE estimator is marked green and
is at the mode of the distribution.

A further advantage over the MLE is that it might be possible to computationally approximate
the posterior density, but not the MLE. This is typically the case if the log likelihood function is
not concave, like in the setting of the MLE of the whole elementary kernel L. In fact the only
hard step in the calculation of the posterior (3.1) is the computation of the normalisation constant

ˆ

�

fX;�.x; �/�.d�/:

2Even it doesn’t one can still define the prior density to be constant and hope that the posterior is a probability density.
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This can often not be performed efficiently but theMarkov chainMonte Carlomethods introduced
later will yield an approximation of the posterior without the need to compute the normalisation
constant.

3.4 Regularisation through the prior. The prior density is very closely related to the
regulariser introduced in the section about maximum likelihood estimation. In fact the mode of
the posterior f�jX is nothing else but the maximiser of

log.f�jX / D LCR

whereR D log.f�/ and hence nothing else but a regularisedMLE. In fact ifR is a regularisation
and exp.R/ is integrable with respect to �, then one can choose f� / exp.R/ as a prior density.
Hence the proposition of a prior and a regulariser are equivalent in a wide variety of cases, but
again, the posterior density encodes much more information than just the location of its mode
which is the regularised MLE.

3.5 Bayesian approach without prior. We have seen that the prior is nothing else but a
regularisation of the likelihood and since MLE can be carried out without regularisation it is
natural to ask whether the Bayesian approach works without a prior. We have seen that if there is
a uniform distribution on the parameter space, the unregularisedMLE corresponds to the uniform
distribution as a prior. So the question is what changes if we propose f� D 1 as a prior if there
is no uniform distribution, or more generally what happens if the prior f� has infinite integral.
In this case, the unnormalised posterior distribution

f.�/ D fX j�.xj�/f�.�/ (3.2)

might not have finite integral and can therefore not be normalised. Hence the posterior can not
be seen as a probability density, but the generalised form (3.2) still exists. If we use the constant
prior f� D 1, the generalised posterior f.�/ is just the observation probability (or density if X
is continuous) of the data x under the parameter � .

Expression of the posterior for DPPs

Now we will express the posterior in the case of DPPs under the following conditions.

3.6 Setting. Let .�; �/ be a measure space and L.�/ 2 RN�Nsym;C be an elementary kernel for
every � 2 �. Further we assume that we have independent realisations Y1; : : : ; Yn of a L-
ensemble.

Typically the parametrisations � 7! L.�/will be one of the three parametric models in III.2.1,
i.e. � will either be the whole kernel itself, the quality vector or the log linearity constant of the
qualities and L.�/ the associated elementary kernel.
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The independence relation leads to a factorisation of the density and we obtain the following
expression for the posterior density

f�jYn.� jY1; : : : ; Yn/ / f�.�/

nY
iD1

fYj�.Yi j�/ D f�.�/

nY
iD1

det.L.�/Yi /
det.L.�/C I /

: (3.3)

Unfortunately the normalisation constant
ˆ

�

f�jYn.� jY1; : : : ; Yn/�.d�/ D
ˆ

�

f�.�/

nY
iD1

det.L.�/Yi /
det.L.�/C I /

�.d�/ (3.4)

can neither be computed analytically nor numerically in an efficient way since the evaluation of
this density involves the computation of the determinant of a N � N matrix. This problem can
be solved through the powerful methods of Markov chain Monte Carlo simulation that allow to
approximate a distribution with only the knowledge of its unnormalised density.

Model selection using the Bayes factor

In this paragraph we will quickly touch on how the Bayesian approach can be used to compare
two different models, i.e. two different parametric families F1 and F2 including two different
priors f�1 and f�2 . For this we will work in the following setup.

3.7 Setting. Let �1; �2 be measurable spaces and �i measures on �i for i D 1; 2. Let
f�i W �i ! Œ0;1� be probability densities with respect to �i , i.e.

ˆ

�i

f�i .�/�i .d�/ D 1 for i D 1; 2:

Further let
Fi D

n
fX j�i .�j�/

ˇ̌
� 2 �i

o
by a family of probability densities with respect to �n WD

Qn
iD1 �.dxi /.

The goal is now two compare which model Fi in combination with the corresponding prior
describes the phenomenon better given some data x. For this we follow [KR95] and introduce
the Bayes factor of the two models given the data x through

K WD K.F1;F2jx/ WD
f .xjF1/
f .xjF2/

D

´
�1
fX j�1.xj�/f�1.�/�1.d�/´

�2
fX j�2.xj�/f�2.�/�2.d�/

:

This is nothing but the ratio of the total probabilities of the data x under the respective models.
If this ratio is big, the model F1 including its prior can be seen as a better description of the data
compared to the second model. There is no clear definition on when the ratio can be seen as big
enough to say this, but the following guidelines in Table 3.1 were proposed in [KR95].
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Value for K Interpretation

1 � 3:2 Only worth a bare mention

3:2 � 10 Substantial

10 � 100 Strong

> 100 Decisive

Table 3.1: Interpretation of how strongly different Bayes factors imply that one model a better
description of the data than the other one.

III.2 Markov chain Monte Carlo methods

The method of Markov chain Monte Carlo (MCMC) simulation arose almost as early as the
Monte Carlo3 simulations itself and since then a rich theory has been established and a broad
range of applications have been found. However, we can only give a short overview over the
basic principles and refer to [MT12] for an introduction of Markov chain theory and to [RC13]
for a survey on (Markov chain) Monte Carlo methods.

Our motivation for the study of MCMCmethods was to obtain an approximation of a distribu-
tion � under the knowledge of its unnormalised density. In the nutshell the idea is to construct
an ergodic Markov chain .Xn/n2N with stationary distribution � , i.e. such that one has

OPn D
1

n

nX
iD1

ıXn
n!1
����! �

almost surely in the weak sense. This Markov chain can then be simulated using Monte Carlo
methods and the associated empirical measures OPn will be approximations of � . However, to
explain this in more detail we need to recapture some notions of Markov chains.

III.2.1 Reminder on Markov chains

We will provide an extremely short presentation of only those results that we will use to explain
the core of MCMC methods. However, this will not contain any proofs and hence it can not
replace the study of the already mentioned text books.
Let in the following .X ;B.X // be a measurable space. This will typically be a topological

space with its Borel algebra later.

3.8 Definition (Markov chain). (i) A transition kernel is a function

K W X � B.X /! Œ0; 1�

3A legend has it that the nameMonte Carlo was given to the work of von Neumann and Ulam by a colleague referring
to Ulam’s uncle who lost a significant amount of money gambling in the Monte Carlo casino in Monaco.
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such that

a) K.x; �/ is a probability measure for every x 2 X and

b) K.�; A/ is measurable for every A 2 B.X /.

(ii) A Markov chain with values in X and transition kernel K is a collection .Xn/n2N of X
valued random variables such that

P
�
X0 2 A0; : : : ; Xn 2 An

�
D

ˆ

A0

.dx0/
ˆ

A1

K.x0; dx1/ � � �
ˆ

An

K.xn�1; dxn/ (3.5)

for all A1; : : : ; An 2 B.X / where  denotes the distribution of X0.

We will call  the initial or starting distribution of the Markov chain and will denote the
distribution of this Markov chain by P and the expectation with respect to it by E Œ��. Further an
easy application of Kolmogorov’s consistency theorem implies that there is a measure P on the
path space XN that satisfies (3.5) which shows the existence of a Markov chain given a transition
kernel K and initial distribution  (cf. [LGC16]). If the initial distribution is deterministic, i.e.
 D ıx for one x 2 X , then we also write Px for the distribution of the Markov chain. We close
this paragraph by introducing the notation

Kn.x; A/ WD Px.Xn 2 A/

which is consistent with (3.5) for n D 1.

Irreducibility, recurrence and existence of stationary distributions

From now on we will fix a reference measure � on X .

3.9 Definition (Irreducibility and recurrence). (i) We say a Markov chain is � ir-
reducible if for every A 2 B.X / with �.A/ > 0 there is an index n 2 N such that

Px.Xn 2 A/ D Kn.x; A/ > 0 for all x 2 X :

(ii) A Markov chain .Xn/n2N is called recurrent if

a) there is a measure � on B.X / such that .Xn/ is �-irreducible and

b) for every A 2 B.X / with �.A/ > 0 the expected number of visits of A is infinite,
i.e.

Ex
�ˇ̌̌˚
n 2 N j Xn 2 A

	ˇ̌̌�
D1 for every x 2 A:

(iii) A Markov chain is called Harris recurrent if it is recurrent and the number of visits is
almost surely infinite, i.e. for any A 2 B.X / with �.A/ > 0 we have

Px
�ˇ̌̌˚

n 2 N j Xn 2 A
	ˇ̌̌
D1

�
D 1 for every x 2 A:
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3.10 Definition (Stationary distribution). Let � be a measure on B.X /. We call � an
invariant or stationary distribution of a Markov chain with kernel K, if XnC1 is distributed
according to � whenever Xn is distributed according to � . This is equivalent to

�.A/ D

ˆ

X

K.x;A/�.dx/ for all A 2 B.X /:

3.11 Theorem (Existence of stationary distributions). If .Xn/n2N is a recurrentMarkov
chain, there exists an invariant � -finite measure which is unique up to a multiplicative factor.

Convergence to the stationary distribution and ergodicity

We will not introduce the notion of periodic and aperiodic Markov chains here, because it would
distract us from our actual goal. However, we still present the following result that only holds
for aperiodic Markov chains and refer to [MT12] for further information. The reason why we
present the theorem is that it explains how one can approximately sample from the stationary
distribution of aMarkov chain, namely it says that the distribution ofXn converges to the invariant
distribution.

3.12 Theorem (Convergence to stationary distribution). Let .Xn/n2N be a Harris
recurrent and aperiodic Markov chain with stationary distribution � . Let further n be the dis-
tribution of Xn, then we have

kn � �kTV
n!1
����! 0

non increasing. Here k�kTV denotes the total variation of a measure

k�kTV WD sup
E

X
E2E
j�.E/j

where the supremum is taken over all finite families of disjoint measurable sets.

3.13 Theorem (Ergodic theorem). Let .Xn/n2N be a Harris recurrent Markov chain with
stationary probability distribution � , then .Xn/n2N is ergodic. This means that if

OPn WD
1

n

nX
iD1

ıXi

is the empirical measure, we almost surely have
ˆ

X

f .x/ OPn.dx/
n!1
����!

ˆ

X

f .x/�.dx/ (3.6)

for every � integrable function f .
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In the particular case that X is a topological space and B.X / is the Borel algebra and if � is a
probability measure, we obtain the almost sure weak convergence of OPn towards � . This means
that the convergence in (3.6) almost surely holds for all continuous and bounded functions f .
Hence, OPn are approximations of the invariant distribution in the sense of weak convergence,
which is metrisable for example by the Lévy-Prokhorov or the bounded dual Lipschitz metric
(cf. [Dud10]).

Idea of Markov chain Monte Carlo methods

The motivation of the study of Markov chain Monte Carlo methods was to approximate the pos-
terior distribution (3.3). The idea is now to construct and then simulate a Markov chain .Xn/n2N
such that the empirical measures OPn converge to the posterior.

3.14 Definition (MCMC methods). AMarkov chain Monte Carlo (MCMC) method for the
simulation of a distribution � is any method that produces an ergodic Markov chain .Xn/n2N
with stationary distribution � .

In order to achieve this we only have to construct a suitable Markov chain and check the re-
quirements of the ergodic theorem. This means we want to construct a Harris recurrent Markov
chain with invariant distribution � and we want to do this without having to compute the normal-
isation constant (3.4). We will now present two of the most common methods to do this which
are the Metropolis-Hastings random walk and the method of slice sampling.

III.2.2 Metropolis-Hastings random walk

The Metropolis-Hastings random walk is arguably the most commonly used MCMC method
and certainly one of the oldest. It was actually proposed in the early 1950s from researchers of
the American nuclear programme in Los Alamos (cf. [MRRC53]). First we will touch on the
theoretical aspects of this method and follow the presentation in [RC13].

3.15 Setting. Let � be a measurable space, � a measure on that space and f W X ! Œ0;1� a
function with finite positive integral

Z WD

ˆ

X

f .x/�.dx/ 2 .0;1/:

Our goal is to find a Harris recurrent Markov chain with invariant distribution

�.A/ WD
1

Z

ˆ

A

f .x/�.dx/:

Let further n
f .�jx/

ˇ̌
x 2 X

o
be a family of probability distributions, which we call the proposal distributions.
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3.16 The MH random walk. Given the first statesX0 D x0; : : : ; Xn D xn of the Markov, we
define XnC1 as follows. Let Y be distributed according to f .�jxn/d� and take one realisation y
of Y . Then set

XnC1 WD

8̂<̂
: y with probability �.xn; y/

xn with probability 1 � �.xn; y/

where

�.x; y/ WD min
�
f .y/f .xjy/

f .x/f .yjx/
; 1

�
: (3.7)

and a
0
WD 1. The first step of the random walk, namely the sampling of y is called the proposal

step and the second one the accept-reject step. In conclusion a single step of the MH random
walk can be expressed in the following way.

Algorithm 3 A single step of the MH random walk
Input: Current state xn of the MH random walk
1: y � f .�jxn/d�
2: a � U.Œ0; 1�/
3: if a � �.xn; y/ then
4: xnC1  y

5: else
6: xnC1  xn

7: end if
8: return xnC1

To see that the definition above indeed yields a Markov chain we convince ourselves that the
transition kernel is given by

K.x;A/ D

ˆ

A

�.x; y/f .yjx/�.dy/C .1 �m.x//ıx.A/

where ıx is the Dirac measure in x and

m.x/ D

ˆ

X

�.x; y/f .yjx/�.dy/ 2 Œ0; 1�

is the acceptance probability of the chain at state x.

3.17 Proposition (Stationary distribution). The probability measure � is a stationary
distribution of the MH random walk.
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Proof. We have

ˆ

X

K.x;A/�.dx/ D
1

Z

ˆ

X

0B@ˆ
A

�.x; y/f .yjx/�.dy/C .1 �m.x//ıx.A/

1CAf .x/�.dx/ (3.8)

We note that
�.x; y/f .yjx/f .x/ D �.y; x/f .xjy/f .y/:

Furthermore we can computeˆ

X

m.x/ıx.A/f .x/�.dx/ D
ˆ

A

ˆ

X

�.x; y/f .yjx/�.dy/f .x/�.dx/

D

ˆ

X

ˆ

A

�.x; y/f .yjx/f .x/�.dx/�.dy/

D

ˆ

X

ˆ

A

�.y; x/f .xjy/�.dx/f .y/�.dy/

where we used Fubini-Tonelli theorem4 in the second to last step. We note that two of the terms
in (3.8) cancel out and we obtainˆ

X

K.x;A/�.dx/ D
1

Z

ˆ

X

ıx.A/f .x/�.dx/ D �.A/:

Now we aim to prove that the MH random walk is Harris recurrent because then the ergodic
theorem yields that the empirical measures associated with the Markov chain will actually con-
verge to � . Obviously this is not trues for all proposal families in general the case, for example
we could consider the case where the proposal distribution f .�jx/ is just the Dirac measure in
x.5 Then the MH random walk would never leave its initial position which will typically be a
deterministic point. Hence, the empirical measures are only the Dirac measure in the starting
point and will not converge towards � .
The first step towards Harris recurrence is to show irreducibility and this will already give us

some hints to what families of proposal are sensible.

3.18 Proposition (Irreducibility). Assume that the proposal family is strictly positive, i.e.

f .yjx/ > 0 for all x; y 2 X :

Then the MH random walk is � irreducible.
4The Fubini-Tonelli theorem states that the order of integration with respect to two � -additive measures can be
swapped, if the integrated function is non negative.

5Obviously this is slightly formal, because the Dirac measure can typically not be expressed through a density.
However, rigorous examples can be constructed similarly.
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Proof. For any measurable set A � X with positive measure �.A/ > 0 we have

K.x;A/ �

ˆ

A

�.x; y/f .yjx/�.dy/ > 0:

To see this, we can assume that this would not hold and then the integrant has to be zero � almost
surely. Since f .yjx/ is strictly positive this would imply �.x; y/ D 0 and hence f .y/ D 0 for
� almost all y 2 A. However, this is a contradiction to

�.A/ D

ˆ

A

f .y/�.dy/ > 0:

Now we can formulate the ergodicity for � irreducible MH random walks.

3.19 Theorem (Ergodicity of the MH random walk). If the MH random walk is � irre-
ducible, then it is also Harris recurrent and hence ergodic.

Proof. We refer to Lemma 7.3 in [RC13] for the proof of Harris recurrency, the ergodicity then
follows from the ergodic theorem.

Implementation of the MH random walk

So far we have presented the theoretical foundations of the MH random walk and now we want
to touch on a few aspect of the simulation of this Markov chain. For this part we shall point
the reader towards the example based introductions [Rob99] and [RCC10] to the implementation
of the MH random walk which also provide coding examples. We have seen that the empirical
measures associated with the MH random walk converge to � under fairly mild assumptions,
meaning for a wide class of proposal distributions. Nevertheless it is mostly the choice of the
proposal that determines the speed of this convergence. In order to shortly demonstrate this effect,
we consider the case X D Rd and that the reference measure � is the Lebesgue measure.

3.20 Choosing a proposal family. Usually one chooses the proposal such that the expecta-
tion of f .�jx/ is x. The most common choice of a proposals is a family of normal distributions
f .�jx/with expectation x and covariance˙ 2 Rd�d . This also has the effect that the acceptance
ratio takes the easier form

�.x; y/ D min
�
f .y/

f .x/
; 1

�
:

Also since the densities are strictly positive we ensure that the resulting Markov chain is � irre-
ducible.
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3.21 Acceptance rate, autocorrelation and effective sample size. Once we have
agreed to stick to normal densities for the proposal distributions, we still have the freedom to
choose the covariance ˙ 2 Rd�d . This determines how far the proposed new values will be
away from the current state of the Markov chain. The motivation for an aggressive proposal
distribution, i.e. for a high variance would be that this would enable the Markov chain to take
bigger steps and hence explore the space X faster. Also the chain would be more likely to jump
between possibly isolated areas of high density. However, this could also lead to a high rejection
rate6 if the proposed values are often so far away from the current state of the Markov chain that
they are lie within an area of low density. In this case the Markov chain will only ‚visit‘ few
distinct points in the space X which is also very unfavourable. In fact the findings in [RGGC97]
suggests that an acceptance rate around 25% is desirable in dimension d � 3 and around 50%
for dimension d D 1; 2. The connection between the proposal distribution and the acceptance
rate is also elaborated in the upcoming example.

The autocorrelation function (acf) of a sequence of data points x0; : : : ; xn captures the esti-
mated correlation between the observations. More precisely acf.k/ gives the empirical correla-
tion7 of .x0; x1; : : : ; xn�k/ and .xk; xkC1; : : : ; xn/. In the case that the data points are generated
by a MH random walk, the autocorrelation function determines the correlation of the Markov
chain at time l with the Markov chain at time l C k. Hence, if acf.k/ < "0 where "0 > 0 is
fixed in advance, one can perceive x0; xk; x2k; : : : as an independent sequence of samples from
� – or more precisely an only weakly correlated one. The effective sample size is the length m
of this new almost uncorrelated sequence x0; xk; x2k; : : : ; xmk . Obviously the effective sample
size strongly depends on the choice of "0 that incorporates how much correlation one is willing
to accept.

We should quickly touch on how the proposal affects the autocorrelation function and hence
the effective sample size. Assume we have a very aggressive proposal distribution. Then we
will typically have a high rejection rate and hence xl D xlCk a lot of times meaning that the
autocorrelation function will be high and therefore the effective sample size is rather low. On
the other hand if the proposal is too conservative the MH random walk will only take very small
steps and hence xlCk will still be close to xl . Therefore, the autocorrelation will be high and the
effective sample size low again. This effect of the proposal can be seen in Figure 3.2.

3.22 Example (One dimensional MH). We follow an examples for a one dimensional MH
random walk given in [Rob99] and we want to approximate the probability distribution with

6The term should be rather intuitive; the rejection rate is the relative amount of rejections that occurred in the MH
random walk and analogously the acceptance rate is its counterpart.

7This is the correlation of the two empirical measures associated with .x0; : : : ; xn�k/ and .xk ; : : : ; xn/.
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unnormalised density

f .x/ WD sin.x/2 � sin.2x/2 � exp

 
�
x2

2

!
:

The goal of this example is to see how different proposal distributions lead to different acceptance
rates, a different exploration of the state space X D R and different effective sample sizes. In
order to achieve this, we run 2 � 104 samples of the MH random walk with starting point x0 D 1
and three different values ˛ D 0:01; 3; 100 for the variance of the proposal distributions. Then
we plot a histogram including the actual density and the autocorrelation function for all different
values. The acceptance rates where approximately 88% for ˛ D 0:01, 34% for ˛ D 3 and 9%
for ˛ D 100. The effective sample sizes for the three different chains different values for ˛ are

2 � 104

50
D 4 � 102;

2 � 104

8
D 2:5 � 103 and

2 � 104

30
� 7 � 102

for ˛ D 0:01; 3; 100 respectively.
This simulation illustrates the problem of too aggressive – ˛ D 100 – and too conservative –

˛ D 0:01 – proposal distributions and shows how this effects the acceptance rate and the effective
sample size.

3.23 Tuning the proposal. In order to obtain a higher acceptance rate without simply choos-
ing the variance of the proposal distribution small one can tune or adapt the proposal distribution.
This means one adjusts the proposal distribution after a while, lets say after the first 103 samples
in such a way that one replaces the original covariance matrix ˙ by the empirical covariance of
the first 103 samples. Then one forgets about all the samples so far – they are usually called the
burn in period – and starts a new MH random walk. It is essential to drop the first samples since
otherwise the Markov property would break as all further samples now rely on the coveriance of
the first burn in period and hence on those points. The reason why this increases the acceptance
rate is, that the proposal now only is aggressive in those directions where the mass of the density
is widely spread. For a further discussion we refer to [RR09].

3.24 The Gelman-Rubin diagnostic. So far we have seen guidelines as what properties of
the MCMC simulation can be seen as favourable or not. However those comments can not re-
place quantitative measures on the convergence of the simulated Markov chains and one of them
is the Gelman-Rubin diagnostics which is also called the OR value. We will not be able to rigor-
ously introduce this quantity, but will make a few comments since we will use it later and refer
to [Rob12] for a thorough introduction to convergence diagnostics for MCMC methods and to
[GRC92] and [BG98] for the orinigal work by Gelman, Rubin and Brooks. In a nutshell the OR
value is an estimate of how much longer a MCMC simulation would have to run to be a good
approximation of the stationary distribution. It is generally accepted that a OR value of at most
1:05 can be taken as a sign – but not a proof – of convergence, cf. [BG98].
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Figure 3.2: Histograms and autocorrelation functions of for three different variances ˛ of the
Gaussian proposal distributions. It is apparent that the histogram for ˛ D 3 fits the actual density
the best and also that the autocorrelation decays the quickest for this parameter. Note that for
˛ D 0:01 the MH random walk only explored some area of high density. The actual density is
obtained by numerical integration.
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Although we don’t introduce the statistics itself, we shall present the requirements to compute
it. The procedure one has to take is the following:

(i) Find the possibly multiple modes of the distribution that should be approximated. This can
be done either by exploiting optimisation algorithms or running short MCMC simulations,
which we will do later in our toy example.

(ii) RunmMCMC simulations of length n starting at random points with variance greater than
the estimated variance of the target distribution � . This variance is typically estimated
through a first, shorter MCMC simulation which can also be used to tune the proposal.

Now the OR value can be computed from the entirety of those m chains of length n and we will
rely on a pre-implemented tool in R to do this.

III.2.3 Slice sampling

Slice sampling is a different MCMC method and quite similar to the MH random walk. Never-
theless it has the benefit that one does not have to define or tune a family of proposal distributions
and that the constructed Markov chain is always irreducible. However, we will see that at least
when one wants to simulate the slice sampling one runs into similar problems of having to choose
a parameter that influences the auto correlation function and hence the speed of convergence of
the method. We begin by fixing our frame we will work in.

3.25 Setting. Let X be a measurable space, � a measure on that space and f W X ! Œ0;1� a
function with finite integral

Z WD

ˆ

X

f .x/�.dx/ 2 .0;1/:

In particular there is Ox 2 X such that f . Ox/ > 0. Our goal is to find an ergodic Markov chain
with invariant distribution

�.A/ WD
1

Z

ˆ

A

f .x/�.dx/:

Further we will assume – after an eventual modification of f on a � Null set – that

f � kf kL1.�/ D inf
n
˛ 2 R

ˇ̌
f � ˛ almost surely with respect to �

o
2 Œ0;1�:

3.26 The slice sampling method. Assumewe have already given the firstn samples x1; : : : ; xn
of the Markov chain. If we have f .xn/ D 0, then we set xnC1 WD Ox. Otherwise we sample y
according to the uniform distribution on Œ0; f .xn/� and define the slice

S WD S.y/ WD
˚
x 2 X j f .x/ � y

	
:
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Figure 3.3: Schematic sketch of the selection of a slice: (a) first y is sampled uniformly in
Œ0; f .x0/� and (b) the slice is selected. Original graphic from [Nea03].

Note that because y < f .xn/ � kf kL1.�/ holds almost surely, we have �.S/ > 0 as well as

�.S/ � y�1
ˆ

S

f .x/�.dx/ <1

where we used Markov’s inequality as well as y > 0 almost surely. Now draw xnC1 according
to the uniform distribution8 on S . Note that if f .xn/ > 0, then f .xnC1/ � y > 0 almost surely,
hence f .xn/ D 0 can only hold for n D 0. Further the reason why we have to treat the case
f .xn/ D 0 individually is, that there typically is no uniform distribution on the slice S.0/ D X .
The pseudo code for the construction of the resulting Markov chain is presented in Algorithm 4.

Algorithm 4 A single slice sampling step
Input: Current state xn of the Markov chain
1: if thenf .xn/ D 0
2: xnC1  Ox

3: else
4: y � U.Œ0; f .xn/�/
5: S  

˚
x 2 X j f .x/ � y

	
6: xnC1 � U.S/
7: end if
8: return xnC1

8Of course we mean the uniform distribution with respect to � that gives weight �.S/�1 � �.A/ to a set A � S .
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If we compare the Markov chain to the MH random walk, we notice that in the slice sampling
we first create a random threshold y and then sample uniformly from all points that satisfy this
threshold. This is just the other way round than in the MH random walk where we first make a
proposal for the next state of the Markov chain and then decide whether we will accept it or not.
Just like in the case of the MH random walk we can explicitly give the transition kernel and

use this expression then to check that � is a stationary distribution. The kernel of the Markov
chain that arises from the slice sampling iteration is given by

K.x;A/ D

ˆ

R

1Œ0;f .x/�.y/

f .x/
�
�.A \ S.y//

�.S.y//
�.dy/

D

ˆ

R

1Œ0;f .x/�.y/

f .x/
�
1

Z.y/

ˆ

A

1Œy;1/.f .z//�.dz/�.dy/

where � is the Lebesgue measure on R, 1 is the indicator function andZ.y/ is the normalisation
constant

Z.y/ WD

ˆ

X

1Œy;1/.f .z//�.dz/ D �.S.y// 2 .0;1/:

Obviously the expression above only holds if f .x/ > 0 and in the case f .x/ D 0 we have

K.x;A/ D ı Ox.A/:

3.27 Proposition (Invariant distribution). The probability distribution � is a stationary
distribution of the Markov chain associated with the slice sampling method.

Proof. For any A � X we can compute
ˆ

X

K.x;A/�.dx/ D
1

Z

ˆ

X

ˆ

R

1Œ0;f .x/�.y/

f .x/
�
1

Z.y/

ˆ

A

1Œy;1/.f .z//�.dz/�.dy/f .x/�.dx/

D
1

Z

ˆ

A

ˆ

R

1

Z.y/

ˆ

X

1Œy;1/.f .x//�.dx/1Œ0;f .z/�.y/�.dy/�.dz/

D
1

Z

ˆ

A

f .z/�.dz/ D �.A/

where we again used Fubini’s theorem for non negative functions.

3.28 Proposition (Irreducibility). The Markov chain that arises from the slice sampling
algorithm is � irreducible.

Proof. Fix A � X with positive probability �.A/ > 0 and x 2 X . If we have f .x/ > 0, then
we have �.A \ S.y// > 0 for one y 2 .0; f .x//. We obtain

K.x;A/ �

ˆ

R

1Œ0;y�.z/

f .x/
�
�.A \ S.z//

�.S.z//
> 0:
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If however f .x/ D 0, then we get

K2.x; A/ D K. Ox;A/ > 0:

3.29 Theorem (Ergodicity). If f is bounded, the Markov chain induced by the slice sam-
pling method is ergodic.

Proof. See Theorem 6 in [MT02].

Implementation details

Just like in the case of the MH random walk we will make a few comments about the actual
simulation of the slice sampling algorithm and for this, we will assume X � Rd .
The main difficulty in the implementation is the sampling of a uniform distribution on a slice

S . In practice it is not even possible to calculate the slice but one can exploit the following
observation. Assume that we are able to simulate a uniform distribution on a set C that contains
the slice S . Then the following algorithm – which is nothing but the conditioning of this uniform
distribution on the event that the outcome is in S – samples uniformly from S .

Algorithm 5 Sampling from a uniform distribution on a subset S � C
Input: S and C � S
1: x � U.C /
2: while x … S do
3: x � U.C /
4: end while
5: return x

An obvious choice for C would be a cuboid

C D

dY
iD1

Œai ; bi �

since it is straight forward to sample from a uniform distribution on a cuboid. Namely one only
has to sample the individual coordinates uniformly in the intervals Œai ; bi �. The problem still
remains how one can find a cuboid that surely contains the whole slice S . The short answer is
that there is no general way to do this. However, not everything is lost, since we can use random
cuboids that have the property that every part of the slice is contained in the cuboid with positive
probability. This will be crucial in retaining the irreducibility of the Markov chain. In fact it
has been found that in applications the following procedure works well (cf. [AFAT14]). Given
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the current state xn of the Markov chain, we propose a random interval Œai ; bi � around the i -th
component of xn. Then we extend those intervals until the endpoints a and b of the cuboid do
not lie in the slice anymore which is described in Algorithm 6.

Algorithm 6 Sampling a random cuboid
Input: Current state xn of the Markov chain, parameter ˛ > 0
1: for i D 1; : : : ; d do
2: ai ; bi � E.˛/
3: end for
4: a .a1; : : : ; ad /; b  .b1; : : : ; bd /

5: while x � a 2 S do
6: a 2 � a

7: end while
8: while x C b 2 S do
9: b  2 � b

10: end while
11: return .x � a; x C b/

Here E.˛/ denotes the exponential distribution with parameter ˛ and determines how large
the first proposed intervals are. It is straight forward and computationally very easy to determine
whether a point x is in the slice S.y/ since one only has to check f .x/ � y. The reason for
the choice of the exponential distribution is that this ensures that the cuboid can get arbitrarily
large with positive probability. This leads to the effect that the Markov chain one obtains in
exchanging the sample from U.S/ by a sample from U.S \ C/ still is irreducible. To see this
we can slightly modify the proof of irreducibility, so for A � X with positive probability we
choose y > 0 such that �.A\S.y// > 0. Further we can choose a cuboid C around x such that
�
�
A\ S.y/\ C

�
> 0. Further this cuboid is contained in the cuboid proposed by Algorithm 6

with positive probability and hence we have

K.x;A/ D Px.X1 2 A/ > 0:

The algorithm that arises from the combination of the usual slice sampling method and the ap-
proximation of the uniform distribution on the slice is presented in Algorithm 7. It shall be
noted, that this algorithm also uses a point Ox of positive density, which can be determined easily
for a lot of densities f . If this is not straight forward, one can sample x0 according to a normal
distribution until we select a point of positive density.

Obviously the algorithm presented above produces aMarkov chain that is not identical with the
one presented in the theoretical discussion of the slice sampling method. However, if one wants
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Algorithm 7 Algorithm for the slice sampling
Input: Unnormalised density f , starting value x0, desired length n of the chain, ˛ > 0
1: if f .x0/ D 0 then
2: x0  Ox

3: end if
4: for i D 0; : : : ; n � 1 do
5: y � U.Œ0; f .xi /�/
6: C random cuboid around xi with parameter ˛
7: x � U.C /
8: while f .x/ < y do
9: x � U.C /
10: end while
11: xiC1  x

12: end for
13: return x D .x0; : : : ; xn/

to ensure the convergence of this slightly modified Markov chain, one has to check whether �
remains a stationary distribution and whether the chain is still ergodic. This is usually done in
the specific setting one works in, cf. [Nea03]. We will quickly discuss this in a very easy case.
Namely let us assume d D 1 and that f is continuous and has only one local maximum. We call
f unimodal in this case and note that every slice S.y/ is an interval. Hence, the proposed cuboid
is an interval around xn 2 S.y/ such that both endpoints are outside of the slice S.y/ and hence
we have S.y/ � C . Therefore, the algorithm above is equivalent to the original slice sampling
method and hence produces an ergodic Markov chain with the desired invariant distribution.

3.30 The choice of ˛. One could think that a small choice of ˛ – which relates into large
values of ai and bi – would be the best since this increases the probability that the whole slice
S is contained in the cuboid C . There is some truth in this approach, since U.S \ C/ is a
better approximation of U.S/ if C is larger and further the while loops in Algorithm 6 need less
repetitions if ai and bi initially are big. However, one should not choose ˛ too small, because a
large cuboid C also means that a lot of samples from U.C / will lie outside of S \ C . Hence,
Algorithm 5 that samples from U.S \ C/ will get slower as it will reject a lot of samples.

In conclusion there is a trade off in terms of computation time between the choice of too small
and too large values for˛. However not always the parameter˛ thatminimises the simulation time
is the most suitable, since the autocorrelation decreases together with the parameter ˛. Hence,
computation time should rather be compared to the effective sample size.

Those effects of ˛ on the auto correlation and therefore effective sample size can be seen
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in Figure 3.4 where the procedure of Example 3.22 is repeated but this time with the slice
sampling method. The sample size remains 2 � 104 and the different parameter choices where
˛ D 0:01; 0:5; 10. The according computation times where approximately 26s for ˛ D 0:01,
1:7s for ˛ D 0:5 and 1:7s for ˛ D 10. In regard of the decay of the autocorrelation functions
and the resulting effective sample sizes, it is apparent that the choice ˛ D 0:5 would be the most
sensible one in this case.

III.2.4 Variational MCMC methods

Now that we have presented a general setup for MCMC methods we wish to use them to approx-
imated the posterior distribution which is given by the unnormalised density

f .�/ D f�.�/

nY
iD1

det.L.�/Yi /
det.L.�/C I /

: (3.9)

In the light of the theoretical guarantees this will surely work and actually Figure 3.1 has been
created this way. However, the evaluation of this unnormalised density f can take several seconds
or even minutes itself since it involves the computation of the determinant of the N �N matrix
L.�/CI . However, one can efficiently compute bounds of the unnormalised density and we will
provide a general setup of how the MH random walk and slice sampling can be expressed using
those bounds. This will lead to significantly shorter simulation times for the respective MCMC
methods.

3.31 Setting. Let X be a measurable space, � a measure on that space and f W X ! Œ0;1� a
function with finite positive integral

Z D

ˆ

X

f .x/�.dx/ 2 .0;1/:

Let further f � kf kL1.�/ and let ˚
f .�jx/ j x 2 X

	
be a family of proposal distributions. Let now f �n ; f

C
n W X ! Œ0;1� be functions such that

f �n .x/ � f .x/ � f
C
n .x/ for all x 2 X as well as

f ˙n .x/
n!1
����! f .x/ for all x 2 X :

We seek an expression of the MH random walk and the slice sampling method that purely relies
on those bounds f �n and f Cn of the unnormalised density.
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Figure 3.4: Histograms and autocorrelation functions for the choices of ˛ D 0:01; 0:5; 10. The
auto correlation obviously decreases the fastest for ˛ D 0:01, however the computation time is
much higher than for the parameter the other parameters.
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Variational MH random walk

We note that the only part in the algorithm for the MH random walk where f is needed itself is
the accept-reject step, hence, it suffices to adjust this step. In order to achieve this we bound the
acceptance rate through

�˙n .x; y/ WD min

(
f ˙n .y/f .xjy/

f �n .x/f .yjx/
; 1

)
:

In fact we obviously have ��n .x; y/ � �.x; y/ � �Cn .x; y/ as well as

�˙n .x; y/
n!1
����! �.x; y/ for all x; y 2 X :

Hence if we want to decide whether a number a satisfies a � �.x; y/ we can iteratively tighten
the upper and lower bounds on � until we either have a � ��n .x; y/ and thus a � �.x; y/ or
a > �Cn .x; y/ and therefore a > �.x; y/. Now we can adjust the algorithm of the MH random
walk accordingly and obtain Algorithm 8.

Algorithm 8 One step in the variational MH random walk
Input: Current state xn of the MH random walk
1: y � f .�jxn/d�
2: a � U.Œ0; 1�/
3: k  1

4: while a > ��
k
.xn; y/ and a � �Ck .xn; y/ do

5: k  k C 1

6: end while
7: if a � ��

k
.xn; y/ then

8: xnC1  y

9: else
10: xnC1  xn

11: end if
12: return xnC1

Variational slice sampling

In the slice sampling we use the unnormalised density twice. The first time when sampling
y � U.Œ0; f .xn/�/ and the second time when checking x 2 S.y/ or equivalently f .x/ � y.
For the first problem we note that we surely have Œ0; f .xn/� � Œ0; f C1 .xn/� and hence we can
use Algorithm 5 to sample uniformly from Œ0; f .xn/�. However, in this algorithm we need to
check y 2 Œ0; f .xn/� or equivalently f .xn/ � y which is just what we had to do determine
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whether x 2 S.y/. Therefore, it suffices to see how one can check f .x/ � y which we will do
analogously to the variational MH random walk by gradually tightening the bounds. This yields
Algorithm 9 that returns ‚TRUE‘ if f .x/ � y and ‚FALSE‘ otherwise.

Algorithm 9 Deciding f .x/ � y through the bounds
Input: y 2 R and x 2 X
1: k  1

2: while y > f �
k
.x/ and y � f C

k
.x/ do

3: k  k C 1

4: end while
5: if y � f �

k
.xn; y/ then

6: return TRUE
7: else
8: return FALSE
9: end if

In conclusion we can express both MCMC methods exactly through those bounds as long as
the bounds converge. This enables a fast simulation of the Markov chains if the unnormalised
density is slow but the bounds f ˙n are easy to compute. In the case that f is the posterior (3.9)
of a DPP such bounds are given in [AFAT14] and [BA15].



Chapter IV

A toy example: Learning the log linear-
ity constant of a spatial DPP

We will apply the MLE and the Bayesian estimation for one log linear model in a controlled en-
vironment, i.e. where the data is generated by ourselves. We will see how the Bayesian approach
allows to encode more information and how the regulariser or prior affects the estimation and
will quickly discuss how this impacts the noise sensitivity of the estimation.
We continue the example of the DPP on a two dimensional grid in the unit square from the first

chapter. For this we note that for a 100� 100 grid the evaluation of the elementary probabilities

fYj�.Aj�/ D
det.L.�/A/

det.L.�/C I /

would involve the calculation of a determinant of a 104 � 104 matrix and even the storage of
such a matrix would pose a problem since it consists of 108 numbers. If the storage of a real
number is done in the double-precision floating-point format, it takes 64bit per number and the
space required to store the entire matrix is 64 � 108bit D 800MB, so almost one Gigabyte.1

This makes even the computation of the log likelihood function very time consuming, let alone
its maximisation. Because of those computational hindrances we will decrease the size but the
ideas remain exactly the same.

4.1 Setting. We set
Y WD 39�1 f0; : : : ; 39g2

and obtain a 40 � 40 grid in the unit square. We again chooseR WD Y and f to be

f .x/ WD exp
�
�8 � x2

�
1One byte is defined to be 8 bits. The units of Megabytes and Gigabytes are defined in the familiar way and denoted
by MB and GB respectively.

88
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and set

.�i /j / f .ki � j k/ for i; j 2 Y :

Further we choose the qualities to be be decreasing with the distance from the centre m of the
and set

qi WD e
6
� exp

�
� 10 ki �mk

�
D exp

�
� 10 ki �mk C 6

�
:

The goal is to estimate the two parameters that characterise the qualities, which are e6 and
�10. In order to do this we note that the qualities are given by a log linear model since we have

qi D exp.�T0 fi / where fi D

0@ki �mk
1

1A and �0 D

0@�10
6

1A :
Hence we should be able to estimate this log linearity constant � 2 R2 based on some data

that is distributed according to this DPP. To do this we generate n D 20 samples Y1; : : : ; Yn from
the DPP using the sampling algorithm introduced in the first chapter.

IV.1 MLE and regularised MLE

In order to perform the maximum likelihood estimation for the log linearity constant, we need to
fix a similarity kernel OS , but since we know the exact kernel, we can simply set OSij WD �Ti �j .
Then we maximise the log likelihood over R2 using a pre-implemented optimisation algorithm
in R. The resulting estimate was

O� D

0@�10:000250
6:007382

1A (4.1)

but from the consistency results we already knew that it should be close to the actual parameter
for large sample sizes. Since we also want to investigate the effect of a regulariser, we define two
different regularisers

R1.�/ WD �
k�k2

24
and R1.�/ WD �

k�k2

2

as a regulariser. Note that those corresponds to the priors

f�1.�/ D exp

 
�
k�k2

24

!
and f�2.�/ D exp

 
�
k�k2

2

!
(4.2)

which are – up to scaling – Gaussian priors with different variance. Under those regularisations,
the respective MAP estimators obtained were

O�1 D

0@�9:870850
5:952101

1A and O�1 D

0@�9:050763
5:597739

1A :
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It is not surprising that regularised MLEs are closer to zero, since the regulariser is built to
penalise large parameter values. Further the effect of the Gaussian prior with smaller variance
– which is the second one – is larger, which is consistent with the heuristic explanation that it
cooperates a stronger prior believe, since it expects the parameter to be close to zero.
We chose the sample size of n D 20 relatively small and want to show the effect the sample

size has on the estimation. Obviously, we know from the second chapter that the different MLE
will converge to the actual parameter. To show this convergence in our case, we iteratively raised
the sample size from 1 to 30 and obtained the maximum likelihood estimators that are shown in
Figure 4.1. We can see that a stronger regularisation leads to a slower convergence, which is to
be expected since it takes longer for the contribution 1

n
�R to the maximised function to decrease.
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Figure 4.1: Plot of the progression of the MLE and regularised MLE. The real parameter is
marked by the red lines and with increased sample size they both estimators are within a reason-
ably small margin.

In the light of the comparison of the different regularisers to the unregularised MLE and also
the true parameter values, it is evident that the first regularisation R1 is more suitable. We will
also explain how one can compare those two regularisers without knowing the true parameter
values or even without solving the maximisation problem assiciated with the MAP estimation.

IV.2 Bayesian estimation using MCMC methods

We will use the same data set consisting of n D 20 samples and will use the first prior in (4.2)
since we have seen that it is more appropriate and will see that also the Bayes factor strongly
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supports this choice. The posterior of the log linearity parameter is given by

f�jYn.� jY1; : : : ; Yn/ / f�.�/

nY
iD1

det.L.�/Yi /
det.L.�/C I /

:

and we will use the MH random walk to approximate it. But before we do this, we will shortly
discuss how the Bayes factor can be used to decide between two different priors if one has not
access to the unregularised and regularised MLE like we did before.

Comparing the different priors via the Bayes factor

We have introduced the Bayes factor as the ratio of the total observation probabilities under two
models. In order to compare the two different priors (4.2), we need to integrate the observation
probabilities over the parameter space, i.e. compute the integralsˆ

�

fYnj�.Y1; : : : ; Ynj�/f�i .�/�.d�/

which we will do numerically. The order of magnitude of the approximated Bayes factor between
the two models arising from the priors (4.2) was 1022 which strongly supports the claim that the
first prior is the more sensible choice. Therefore we will only work with this one in the remainder.
It shall be noted that the numerical integration carried out above can only be performed in an

efficient way if the parameter space � is rather low dimensional. If this is not the case one can
exploit probabilistic approaches based Monte Carlo simulations to calculate this normalisation
constant. Details on such approaches can be found in the section on Monte Carlo integration in
[RC13].

Approximation of the posterior using MCMC simulations

In order to approximate the posterior density through a MH random walk we proceed in the
following steps.

4.2 First burn in to find a starting point. In the first phase we want to find an area of high
density and in order to do this we simulate MH random walks with different starting positions
and try to identify the regions where they get stuck in. This will typically happen in areas of at
least locally highest probability. We have already seen that in order to obtain a reasonable MH
random walk one has to choose a suitable proposal family. We use Gaussian proposals f .�j�/
that are centered at � and adjust the variance such that we obtain an acceptance rate of roughly
25% � 75%.
Although there is no rigorous method to choose the variance of the proposal distribution at this

point we make to general observations. A very high acceptance rate hints to the fact that every
proposed step is within a region of almost equal density and hence one probably has to increase
the variance and hence the proposed step size. On the other hand if the acceptance rate is close
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to zero is usually due to the fact that one proposes mostly steps into areas of very low density and
hence it is reasonable in most cases to decrease the variance.

Once the variance is adjusted we run a first simulation of length 2 � 102 in order to see where
the MH random walk is going to focus. We take the mean value of the second half of the samples
as a measure of the area where the MH random walk spends most of its time. Here, we neglect
the first half since it is very highly dependent on the starting point and it shall be noted that if a
state of the Markov chain has high density, the chances are rather high that it will stay there for
a few more steps and hence this point is weighted more heavily in the mean of the random walk.
The positions of the Markov chain are shown in Figure 4.2 for different starting positions of the
MH random walk and we notice that the mean of their second half hardly depends on the initial
state.
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Figure 4.2: A plot of the first burn in period with two different starting points – the origin and
.10;�10/. The regularised MLE for the log linearity constant is marked by the green cross and
the mean of the second half of the random walk by the red cross.

Further the plots of the states of the Markov chain in Figure 4.3 show that the acceptance rate
drops significantly after roughly 20 steps. This is a sign that we were successful in the process
of finding an area with high density, since a lot of rejections imply, that the proposed points had
significantly lower density.

One could argue that it would be reasonable to choose the (regularised) MLE as a starting
point for the random walk. However, since we partly motivated the Bayesian approach to be
an alternative to the infeasible maximum likelihood estimation for the elementary kernel L, we
presented the procedure above that can also be used for the estimation of L.
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Figure 4.3: Plots of the two state parameters of the MH random walk starting at the origin. The
acceptance rate drops significantly and hardly any proposals are accepted.

4.3 Second burn in to tune the proposal. We use the second burn in period to tune the
proposal according to 3.23 for the final simulation. To do this we first select a starting point
according to the result of the first burn in period. Then we adjust the variance of the Gaussian
proposals such that we obtain a reasonable acceptance rate. The variance of the proposals will be
much smaller than the one of the first burn in since we have seen in the state plots of the first burn
in period that the acceptance rate decreased heavily. In a heuristic way it can be said that one now
works ‚locally‘ and tries to explore the finer structure of the distribution and has to take smaller
steps in order to do so. We run this MH random walk for 5 � 102 samples which are shown in
Figure 4.4 and calculate their empirical covariance˙ 2 R2�2. We see that the points are located
around the regularised MLE and we can get a first idea along which direction the parameter is
more uncertain.

4.4 The actual MCMC simulation. In this final step we simulate a MH random walk of
length 104 and with the same starting point as in the second step. Now we use the prior adjusted
according the second burn in period. This means we choose f .�j�/ to be the density of a normal
distribution centered at � and with covariance ˙ . This leads to a higher acceptance rate of 60%
compared to 21% in the second burn in period which can also be seen in the according state plots
in Figure 4.5 and 4.6. Further we see in Figure 4.7 that the auto correlation function decreases
faster with this tuned proposal. Finally we use a pre-implemented interpolation method to obtain
a smoothed twodimensional histogram – also called a heat plot – which is shown in Figure 4.8.
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Figure 4.4: A plot of the samples of the MH of the second burn in period. One can see how
the points are distributed around the regularised MLE which is marked red, the MLE is marked
green. Their empirical covariance will be used to tune the proposal.
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Figure 4.5: State plots of the second burn in period. One can see that the acceptance rate does
not change like in the first burn in.
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Figure 4.6: State plots of the final MH random walk on the bottom. One can see how the tuned
proposal gives a higher acceptance rate than in the second burn in period.
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Figure 4.7: A plot of the autocorrelation functions of the second burn in period and the final MH
random walk. The latter one decreases faster which hints to a faster convergence due to the tuned
proposal distributions.
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Figure 4.8: Heat map of the MH random walks with 104 iterations. The regularised MLE esti-
mator is shown as a white and the MLE as a green cross. The regularised MLE is the maximum
of the (approximated) posterior.

4.5 Gelman-Rubin diagnostic. In order to justify the length of 104 of our final MCMC sim-
ulation for the approximation of the posterior we use the Gelman-Rubin diagnostic. Hence, we
run a second chain with a random starting value sampled from a Gaussian distribution centered
around the mean of the second half of the first burn in period and with twice the variance of
the second burn in period. Then we use the pre-implemented R function gelman.diag that
computes the OR value and an upper estimate for it and obtain the following results.

OR value upper estimation of OR

First parameter 1.01 1.06

Second parameter 1.02 1.09

Table 4.1: Table with OR values for both coordinates of the parameter including upper estimates.

The small OR values imply that the length of the MH random walk was not too short. On the
other hand Figure 4.9 shows a plot of the evolution of the OR value with increasing length of the
chain and it suggests that the length of the chain was not unreasonably long.

Bayesian approach without prior

We have seen that the prior or regulariser influences the estimation and will often lead to worse
estimates. However, we have discussed shortly how we can follow a generalised Bayesian ap-
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Figure 4.9: Plot of the evolution of the OR value for first (left) and second (right) coordinate of the
parameter in dependency of the length of the Markov chain. The upper estimates for the OR value
are depicted in red.

proach without a prior which results in having the likelihood function as a posterior,

f�jX .� jx/ D fX j�.xj�/:

In order to see that the MCMC approximation still works for this function, we note that

d� WD f�jX � d�

is a � -finite measure on the parameter space �. To approximate this measure, one can use the
following more general version of the ergodic theorem (cf. Theorem 17.3.2 [MT12]).

4.6 Theorem (Ergodic theorem). Let .Xn/n2N be a Markov chain with � -finite stationary
distribution � and let

OPn WD
1

n

nX
iD1

ıXi

be the empirical measures associated with the Markov chain. Then the following two statements
are equivalent:

(i) For all �-integrable functions f; g with
´
g.x/�.dx/ ¤ 0 we have

´
f .x/ OPn.dx/´
g.x/ OPn.dx/

n!1
����!

´
f .x/�.dx/´
g.x/�.dx/

:

(ii) The Markov chain .Xn/n2N is Harris recurrent.
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This implies directly that the restrictions of OPn onto sets of finite measure �.A/ <1 converge
weakly towards � up to normalisation. The argument for the stationarity of the � -finite measure
� stays exactly the same as before. Hence, we can take a completely analogue approach for the

Figure 4.10: Heat map of the MH random walks with 104 iterations. The regularised MLE
estimator is shown as a white and the MLE as a green cross. The MLE is the maximum of the
(approximated) likelihood.

approximation of the likelihood function, but we only present the result of the third and final
MCMC simulation in Figure 4.10.
It is evident from both, theoretical considerations and the experimental results of the maxi-

mum likelihood estimations and the approximations of the posterior that the regulariser or prior
always forces the estimation closer to the origin. Obviously this can make the estimation better,
if for example the unregularised MLE is larger than the actual parameter, but then it makes the
estimation better by pure luck. We will see later that the influence of the prior can be a little bit
more positive if the data is perturbed by random noise.

A naive approximation of the posterior

The motivation for the use of MCMC methods was that one wants to obtain an approximation of
the posterior. We present here a different and naive approach, which works a lot faster at least
in our toy example. However, we will see later that this approach suffers from what is known as
the curse of dimensionality,2 i.e. the time needed to perform it will grow exponentially with the
dimension of the parameter that should be estimated.
2This name is used for pretty much all phenomena that grow exponentially with the dimension of the problem.
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Let us assume that we have performed the two burn in periods of the MH random walk pre-
sented above. Then we roughly know the location of the high density from the first burn in period
and also the approximate shape of it from the second one. Now we place a 40�40 grid above this
box and evaluate the unnormalised posterior at those grid points. Then we use an interpolation
algorithm to obtain an approximation of the unnormalised posterior density. This interpolation
usually comes in a quite simply form – for example piecewise linear – and can therefore by ex-
plicitely expressed and integrated in order to normalise the approximate posterior. The results
for this approach can be seen in Figure 4.11 and we will discuss the advantages and hindrances
in the next paragraph.

Figure 4.11: Approximations of the posterior (left) and of the likelihood function (right) obtained
by the interpolation between breakpoints. Just like in the approximations usingMCMCmethods,
the reguralised MLE is marked white and the MLE green.

Complexity of the different approaches

In large examples the evaluation of the likelihood function

fYnj�.Y1; : : : ; Ynj�/ /

nY
iD1

det.L.�/Yi /
det.L.�/C I /

involves the computation of aN �N matrix. This can be done explicitly using Gauss elimination
which does not change the determinant – at least up to a sign – and can be performed in at most
N 3 steps, cf. [Val79].3 Hence, the time needed for the computation of the likelihood function
can be bounded – up to a constant – by

N 3
C

nX
iD1

jYi j
3
� .nC 1/ �N 3

3Actually one can even do better, but those algorithms come with greater implementation challenges.
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and we say it can be performed inO.N 3/ time.4 In practice this will take a significant amount of
time and this was also the motivation for the variational MCMCmethods. For example in our toy
example the computation took roughly 1:5 seconds on a 1:8GHz Intel Core i5 with 8GB RAM5

using the determinant algorithm in R.

For a single step of the MH random walk the unnormalised posterior needs to be evaluated
twice for the computation of the acceptance threshold �.x; y/, cf. (3.7). Usually one will work
with a prior that is easy to compute and with a proposal that can be simulated fast and hence we
will neglect its contribution and thus one step of the performance of one MH random walk can
be carried out in O.N 3/ time. If T denotes the length of the MCMC method, the time needed
for its simulation is

O
�
T �N 3

�
: (4.3)

In the final step of the MH random walk, we set T D 104 as the length and this relates to an
approximate simulation time of

104 � 2 � 1:5s D 3 � 104s � 8h

The strength of the naive approximation based on the interpolation between breakpoints is that
one only has to evaluate the unnormalised posterior 402 D 1:6 � 103 � 104 times. The time
needed for this is approximately

1:6 � 103 � 1:5s D 2:4 � 103s D 40min:

However, if we denote the dimension of the parameter byM , then the size of the grid of break-
points needed for the interpolation grows exponentially inM . Let R denote the number of grid
lines along each coordinate, then one needs to evaluate the posterior RM times and the times for
this behaves like

O
�
RM �N 3

�
: (4.4)

In 10 dimension and with 40 grid lines along all dimensions, this corresponds to 4010 > 1016

evaluations which can not be performed in reasonable time. This exponential increase makes this
direct approach impossible if the parameter one wishes to estimate is not very low dimensional.
Nevertheless it might be possible to modify this approach in a suitable way to make it more
promising in higher dimension. For example one could try to iteratively raise the resolution of
the grid on the places where one expects a high value of the function or high changes of the
function. Alternatively it might be worth to investigate how different approximation algorithms
of high dimensional functions could help in this approach. Obviously the desirable length T

4See also the Landau or ‚big O‘ notation in the nomenclature.
5I used a MacBook Air from 2012.
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of the Markov chain will increase with the dimension of the parameter space, however this will
typically not be the case exponentially inM , cf. [Kun17].

The complexity of the slice sampling algorithm can not be given this easily, at least for the
version we presented. This is because the approximate sampling from the uniform distribution on
the slice proposed inAlgorithm 7 can need arbitrarilymany samples from the uniform distribution
on the proposed cuboid. Although those uniform samples can be generated efficiently one has to
evaluate the unnormalised posterior each time to check whether the proposed sample is actually
contained in the slice.

Comments on real world applications

Although this is just a controlled toy example, this procedure can easily be generalised to real
world settings. However, one has to face the following two major challenges:

(i) In practice one will not know the feature vectors fi like we did, so one will have to model
those. Usually one would put all quantitative properties into this vector that one would
believe could have an effect on the quality of an item. For example if the DPP should
model the picnic positions of people in a park one could argue that the quality, i.e. the
popularity of a picnic spot depends amongst other things on the distance to the next trash
bin, the next toilet and overall noise level. Although one thinks that those parameters can
play a role, we could not argue a priori whether they have a positive or a negative impact.
For example if the toilets are nice and clean it might be favourable to be closer to them, if
they are dirty it might be better to be far away from them in order to avoid their unpleasant
odour. However, one does not have to know this straight away as this effect is determined
by the according log linearity constant and hence can be estimated in the above manner.

(ii) Secondly and maybe even more importantly the actual similarity kernel is also unknown
and hence one also has to come up with a reasonable model for it. Either this can be done
by purely relying on models created by people familiar with the real world phenomenon
that is being investigated, or one could also try to estimated the similarity kernel itself.
However, estimating the whole similarity kernel is equivalent to a maximum likelihood
estimation of the whole elementary kernel L and we have seen in the previous discussion
about computability that this results in an optimisation problem that can not be solved
efficiently. However, the proposed estimation of the repulsiveness parameter might help
here, since one only has to model the repuslive structure qualitatively and the estimation
of the parameter will take care of the strength of the repulsion.
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IV.3 Stability under noise – does the regularisation help?

In real world applications the observed data will almost never be free from noise and outer in-
fluences. Therefore one wants to establish stable estimation techniques in the sense that small
changes in the data should only lead to small changes in the estimation. This is nothing but the
question of continuity of the estimation rule and in a lot of scenarios a regulariser or prior can help
to lower the effect that random perturbations of the data have on the estimation, cf. [BVDG11].
Thus, we want to investigate whether this is the case for the parameter estimation of discrete
DPPs. First we have to specify what noise we are going to consider in the case of discrete DPPs.
If one works with continuous DPPs one could assume a perturbation of the exact positions of the
observed points, however in the discrete setting this does only make limited sense. Therefore we
will work with the observations of a DPP where points are randomly added or deleted and will
specify this later.
Before we investigate the stability properties of the estimation in the specific setup for DPPs,

we should make some general statements. The estimation can be seen as the following two stage
process

data x
evaluation of fXj�
�����������! posterior fX j�.xj�/f�.�/

maximisation
��������! MAP estimator O�:

If one wants to investigate the stability properties of the estimation which is nothing but the
continuity, then it is reasonable to do this for both steps separately. The second step is in general
discontinuous since the maximisation of a function is not a continuous operation under the usual
topologies on functions corresponding to uniform or pointwise convergence or integral norms.
Usually the first step will be continuous in some notion, for example if all densities fX j�.xj�/

are continuous in x, then the posterior depends continuously on the data x in terms of pointswise
convergence which corresponds to the product topology. The choice of the prior can possibly
strengthen this continuity property and lead to a uniform convergence. If additionally all poste-
rior densities have a unique maximiser, then the maximisation is continuous on this subclass of
functions with respect to the uniform topology. In summary we have seen that the prior comes
into play at two points, the first one to strengthen the continuity of the first step and then to lead
to a possibly more well behaved class of posterior densities.
In the case of discrete DPPs, our space of observations 2Y is discrete and hence the only

reasonable topology on it is the discrete topology, i.e. the powerset itself. Every mapping is
continuous with respect to this topology and hence the prior is not needed for this qualitative
property. Thus, there is no apparent reason why the regularisation or the prior should bring any
benefits. We will see in our examples that it can actually be used to regularise certain parameters
of the DPP but only if one has a very clear understanding of how those parameters are influenced
by the noise.
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Experiments

First we explain which kind of noise we will consider.

4.7 Setting. Let B1; : : : ; Bn be independent realisations of a DPP P. Let further C1; : : : ; Cn
be independent realisations of an independent Poisson point process. We assume that we have
given the data

Yi WD Bi n Ci \ Ci n Bi for i D 1; : : : ; n:

The observations Yi correspond exactly to the observation of a DPP where points were randomly
deleted and added.

We will generate noisy data consisting of n D 8 samples of a DPP perturbed by a Poisson
point processes with marginal kernel � � I where we call � 2 .0; 1/ the intensity of the point
process. We calculate the MLE and regularised MLE corresponding to the regularisation given
by the prior (4.2). We use an intensity of � D 1

400
and repeat this procedure eight times and the

results of this are fixed in Table 4.2.

MLE regularised MLE

1 (-10.05, 7.22) (-9.76, 7.09)

2 (-9.44, 6.67) (-9.16, 6.55)

3 (-10.51, 7.05) (-10.20, 6.91)

4 (-9.79, 6.45) (-9.49, 6.32)

5 (-11.03, 7.06) (-10.70, 6.92)

6 (-10.07, 6.97) (-9.78, 6.85)

7 (-10.04, 6.53) (-9.74, 6.40)

8 (-9.76, 6.83) (-9.47, 6.70)

Table 4.2: Table with the MLE and regularised MLE for noisy data of a DPP perturbed by a
Poisson point process with intensity � D 1

400
.

Like in the case of estimation without noise, the regularised MLE is closer to the origin than
the unregularised one. In the first component, this leads to worse estimates and in the second
one to better ones. The reason that the estimation of the second parameter benefits from the reg-
ularisation is the following. If the cardinality of the DPP is smaller than N=2, then the presence
of noise – at least the one we are considering – leads to a higher expected cardinality in the data
since more points are added than deleted because we expect

jYi \ Bi j �
ˇ̌
Bi n Yi

ˇ̌
:
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This leads to an estimation of higher qualities and the magnitude of the qualities is controlled
through the second parameter. Hence, the regulariser forces the second component MLE into
the right direction. However this kind of regularisation can only be successful, if one has a
clear understanding into which direction the noise will perturb the estimates. If for example the
cardinality of the DPP is larger than N=2 the Poisson noise will lower the cardinality of the data
and the regulariser could increase this effect instead of weakening it.
To conclude, we found that a regulariser can be used to lower the effect random perturbations

have on the estimation, but only if the qualitative effect of the noise on the certain parameters is
understood from theoretical considerations. In this case, however, it might be enough to note this
effect or to correct it directly and not through a regulariser.



Chapter V

Summary and conclusion

In this thesis we gave a short but mostly self contained introduction to the basic notions of discrete
determinantal point processes. This also included results concerning their existence as well as
an explicit construction of them which can be used to simulate them.

Based on those preliminaries we have presented different approaches to the estimation of sev-
eral parametric models of discrete DPPs. First we presented a point estimator that reconstructs
an estimation for the marginal kernel according to the empirical marginal densities. The central
tool for this is the solution of the principle minor assignment problem that is concerned with the
existence and construction of a matrix with prediscribed principle minors. We showed how this
can be reduced to the solution of a set of linear equations over the prime field F2. One drawback
of this approach is, that one has to calculate a minimal shortest cycle basis of the estimated adja-
cency graph which is not straight forward to implement. Further we have seen that this estimator
is consistent, but the results in [UBMR17] also imply that the convergence might be very slow.

The second approach was based on the well established theory of maximum likelihood esti-
mation, which yields another point estimator. However the main difficulty here is that the log
likelihood function for the whole elementary kernel L is not concave and therefore hard to max-
imise in practice. Nevertheless, we have seen that this problem can be solved by the use of a log
linear model for the qualities. The trade off is that this model has a lower descriptive power and
that one has to model the similarity of the DPP which determines the structure and strength of
the repulsion. Finally, we proved that the MLEs exist with increasing probability and that they
are consistent estimators for the respective parameters which we also generalised to the MAP
estimation.

In the third chapter we introduced the Bayesian approach to parameter estimation which is
fundamentally different in the sense that it treats the estimated parameter as a random varibale
rather than a single value. This does not only allow to capture the uncertainty of the estimation
but also has a regularising effect in the sense that the posterior distribution always exists even if
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the according maximum likelihood estimator doesn’t. We have seen that the prior corresponds
exactly to the explicit regularisation of the MLE we considered earlier. We have seen how the
posterior density of the parameter can be approximated using different MCMC methods even if
the MLE is impossible to compute.
In the last chapter we performed the MLE and Bayesian estimation for a toy model introduced

earlier. We saw how the sample size affects the quality of the estimation, in particular with
different regularisations. In general, it can be noted that a wrong regularisation is especially
bad for small sample sizes and hence different priors should be compared, for example using the
Bayes factor. Further we used the MH random walk to approximate the posterior distribution and
applied two different burn in periods. It is apparent that the tuning of the proposal lead to a higher
acceptance rate and a faster decreasing auto correlation function. Finally we investigated the
effect random noise has on the estimation. In fact, some parameters get distorted by the presence
of Poisson noise, however we argue that it is only reasonable to use a suitable regulariser if one
has a clear understanding of the qualitative structure of this influence.

Further work

During the work on this dissertation the following questions arose that might be worth to consider
further.

(i) Can one effectively perform maximum likelihood estimation of the repulsiveness param-
eter � , in the best case even simultaneously to the log linearity constant � of the quality?
If not, could this be done by iteratively optimising � and � after another? If one of those
procedures works theoretically, does it provide any significant improvement over the other
estimations?

(ii) What does the geometry of the log likelihood function of the whole elementary kernel look
like? Are there other critical points than to the global maximiser?

(iii) Are the presented point estimators unbiased?

(iv) How do the different point estimators perform compared to each other and can one put
those findings onto rigorous base in the sense that one is the optimal estimation for some
given observations? Does that performance change under the presence of noise?

(v) Investigate whether the ‚naive‘ approach for the approximation of the posterior could some-
how be saved in higher dimension. Past work on the approximation of high dimensional
functions could help here as well.

(vi) Find further applications for the use of DPPs.
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To conlude, we want to emphasise that we believe that determinantal point processes will
continue to get attention from the research communities concerned with machine learning, data
science and computational statistics. We assume that they can help to improve various current
techniques in those fields and think that they are already on the way of doing this.



Chapter A

Auxiliary results

The only result we used during the thesis that we consider not general mathematical knowledge
is the intersection theorem of Cantor. Since it is hard to find a reference of the general statement
we quickly present the proof that can also be found on the Wikipedia entry.

A.1 Theorem (Cantor’s intersection theorem). LetX be a topological Hausdorff space
and let K1 � K2 � : : : be a sequence of descending, non empty compact sets. Then also the
intersection

1\
nD1

Kn

is non empty.

Proof. Assume that the intersection would be empty, and set Un WD X nKn which is open since
Kn is closed as the compact subset of a Hausdorff space. Then .Un/n2N is an open covering of
K1 since we have

1[
nD1

Un D X n

0@ 1\
nD1

Kn

1A D X :

Hence we can select a finite subcover and obtain

K1 �

N[
nD1

Un D X n

0@ N\
nD1

Kn

1A D X nKN :

However since Kn � K1 this implies KN D ∅ which is a contradiction.
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Chapter B

Generated code

All the codingwas done in R and the code of the sampling algorithm, the generalMCMCmethods
and also the estimation of the log linearity constant will be provided here.

B.1 Sampling algorithm

# Imp l emen t a t i o n o f t h e samp l ing a l g o r i t hm as a f u n c t i o n o f t h e
# e i g e n d e c ompo s i t i o n o f t h e e l emen t a r y k e r n e l L

SamplingDPP <� f unc t i on ( lambda , e i g e n v e c t o r s ) {
# F i r s t p a r t o f t h e a l go r i t hm , do ing t h e s e l e c t i o n o f t h e e i g e n v e c t o r s
N = l eng th ( lambda )
J <� run i f (N) <= lambda / (1 + lambda )
k <� sum ( J )
V <� matrix ( e i g e n v e c t o r s [ , J ] , nrow=N)
Y <� rep ( 0 , k )

# Second pa r t o f t h e a l go r i t hm , t h e b i g wh i l e loop
whi le ( k > 0) {

# Ca l c u l a t i n g t h e we i g h t s and s e l e c t i n g an i t em i ac co rd i ng t o them
wghts <� k^(�1) � rowSums (V^2)
i <� sample (N, 1 , prob=wghts )
Y[ k ] <� i
i f ( k == 1) break

# P r o j e c t i n g e_ i on to t h e span o f V
help <� V %�% V[ i , ]
help <� sum ( help ^2)^(�1 / 2) � help
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# P r o j e c t i n g t h e e l emen t s o f V on to t h e subspace o r t h ogona l t o e_ i
V <� V � help %�% t ( t (V) %�% help )

# Or t hono rma l i z e V and s e t near z e ro e n t r i e s t o z e r o
V[ abs (V) < 10^( �9)] <� 0
j <� 1
whi le ( j <= k ) {

he lp2 <� rep ( 0 , N)
m <� 1

whi le (m <= j � 1) {
he lp2 <� he lp2 + sum (V[ , j ] � V[ , m] ) � V[ , m]
m <� m + 1

}
V[ , j ] <� V[ , j ] � he lp2
i f ( sum (V[ , j ] ^ 2 ) > 0) {
V[ , j ] <� sum (V[ , j ]^2)^( �1 / 2) � V[ , j ]

}
j <� j + 1

}
V[ abs (V) < 10^( �9)] <� 0

# S e l e c t i n g a l i n e a r i n d ep end en t s e t i n V
k <� k � 1
q <� qr (V)
V <� matrix (V[ , q$ p i v o t [ seq ( k ) ] ] , nco l=k )

}
re turn (Y)

}

B.2 Implementation of the MCMC methods

# F i r s t we imp lemen t t h e Me t ropo l i s�Has t i n g s a l g o r i t hm . We imp lemen t t h e
# propose and r e j e c t s t e p . We use a Gauss ian as a p ropo sa l w i t h c o va r i a n c e
# ma t r i x a lpha t im e s t h e i d e n t i t y .
# Load l i b r a r y f o r m u l t i v a r i a t e normal .
l i b r a r y (MASS)
Me t r o p o l i s <� f unc t i on ( x , f , a l p h a =1){

d <� l eng th ( x )
i f ( l eng th ( a l p h a ) == 1) {

a l ph a <� diag ( rep ( a lpha , d ) , d )
}
y <� mvrnorm (1 , x , a l p h a )
z <� f ( y )
i f ( i s . nan ( z ) | | run i f ( 1 ) � f ( x ) > z ) y <� x
re turn ( y )
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}

# Now we t u r n towards s l i c e samp l ing . Propos ing a random i n t e r v a l t h a t i n c l u d e s
# t h e s l i c e . We use an e x p o n e n t i a l random v a r i a b l e t o d e f i n e t h e w id th o f t h e
# i n t e r v a l .
RandomIn t e rva l <� f unc t i on ( x , y , f , a l p h a =1) {

c <� f ( x )
# We make t h e i n t e r v a l t h e same l e n g t h i n e v e r y d imens ion .
a <� rexp ( 1 , r a t e = a l ph a ) # rexp ( l e n g t h ( x ) , r a t e=a lpha )
b <� rexp ( 1 , r a t e = a l ph a ) # rexp ( l e n g t h ( x ) , r a t e=a lpha )
# One can check bo th e n d p o i n t s s i m u l t a n e o u s l y t o avo id t h e need o f two l oop s .
whi le (TRUE) {

help <� f ( x � a )
i f ( i s . nan ( help ) | | help < c � y ) break
a <� 2 � a

}
whi le (TRUE) {

help <� f ( x + b )
i f ( i s . nan ( help ) | | help < c � y ) break
b <� 2 � b

}
re turn (matrix ( c ( x � a , x + b ) , l eng th ( x ) ) )

}
# Doing a s i n g l e s l i c e sample .
S l i c eS amp l i n g <� f unc t i on ( x , f , a l p h a =1) {

d <� l eng th ( x )
a <� f ( x )
y <� run i f ( 1 )
c <� RandomIn t e rva l ( x , y , f , a l p h a )
z <� run i f ( d , c [ , 1 ] , c [ , 2 ] ) # r u n i f ( 1 , �4, 4 )
whi le (TRUE) {

help <� f ( z )
i f ( i s . nan ( help ) | | help < a � y ) z <� run i f ( d , c [ , 1 ] , c [ , 2 ] )
e l s e break

}
re turn ( z )

}

# Imp l emen t i ng t h e MCMC method . The f u n c t i o n needs t h e unnorma l i s ed d e n s i t y f ,
# a s t a r t i n g va l u e x0 , sample s i z e T whe ther i t s hou l d be MH or S l i c e Sampl ing
# and t h e parame te r alpha , which e i t h e r s p e c i f i e s t h e v a r i a n c e o f t h e p ropo sa l
# which i s m u l t i v a r i a t e normal or t h e r a t e o f t h e e x p o n e n t i a l random v a r i a b l e
# which d e f i n e s t h e t h i c k n e s s o f t h e random i n t e r v a l .
MCMC <� f unc t i on ( f , x0 , T=10^3 , MH=TRUE, a l ph a =1) {

d <� l eng th ( x0 )
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x <� matrix ( rep ( x0 , T ) , d )
i f (MH) {

f o r ( t i n 2 :T ) x [ , t ] <� Me t r o p o l i s ( x [ , t �1] , f , a l p h a )
}
e l s e {

# Check whe ther s t a r t i n g va l u e i s im p o s s i b l e . In t h i s case t h e s l i c e i s t h e
# whole space and hence t h e e n d p o i n t s o f t h e random i n t e r v a l w i l l d i v e r g e .
whi le ( i s . nan ( f ( x0 ) ) | | f ( x0 )==0) {

x0 <� mvrnorm (1 , x0 , diag ( rep ( a lpha , d ) , d ) )
}
x [ , 1 ] <� x0
f o r ( t i n 2 :T ) x [ , t ] <� S l i c eS amp l i n g ( x [ , t �1] , f , a l p h a )

}
re turn ( x )

}

B.3 MLE and Bayesian estimation of the log linearity constant

# NEEDS: SamplingDPP , d e f i n eS , example o f DPP on a two d imen s i o na l g r i d w i t h
# log l i n e a r q u a l i t i e s i n c l u d i n g t h e e i g ende compo s i t o n o f L .

# With t h i s t o y example we aim t o per fo rm t h e f i r s t l e a r n i n g o f pa ramte r s
# a s s o c i a t e d t o a k e r n e l o f a DPP . More p r e c i s e l y we w i l l g e n e r a t e our own
# da ta o f p o i n t s on a two d imen s i o na l g r i d w i t h a log l i n e a r q u a l i t y model
# and aim t o e s t i m a t e t h e l og l i n e a r i t y parame te r .

# Gene ra t i on o f t h e da ta
T <� 20
data <� rep ( l i s t ( 0 ) , T )
f o r ( i i n 1 :T ) {

data [ [ i ] ] <� s o r t ( SamplingDPP ( lambda , e i g e n v e c t o r s ) )
}
# Expo r t i n g t h e da ta i n t o a . t x t f i l e .
wr i t e . t a b l e ( t o S t r i n g ( data ) , " mydata . t x t " , sep=" \ n " )

# De f i n e t h e q u a l i t y q , L , t h e f e a t u r e sum and t h e l o s s i n dependency o f t h e
# parame te r t h e t a .
Qua l i t y <� f unc t i on ( t h e t a ) {

re turn ( exp ( t h e t a [ 1 ] � DistanceNew ( rep ( 5 , n ) , 1 : n , 2 , m) + t h e t a [ 2 ] ) )
}
LFunc t ion <� f unc t i on ( t h e t a ) {

re turn ( t ( t ( Qu a l i t y ( t h e t a ) � S ) � Qua l i t y ( t h e t a ) ) )
}
# De f i n e t h e sum o f t h e d i v e r s i t y f e a t u r e s over a s e t A .
Fe a t u r e <� f unc t i on (A) {
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re turn ( c ( sum ( DistanceNew ( rep ( 5 , l eng th (A) ) , A, 2 , m) ) , l eng th (A ) ) )
}
# De f i n e t h e o b s e r v a t i o n p r o b a b i l i t y and t h e l og l i k e l i h o o d f u n c t i o n .
Ob s e r v a t i o n P r o b a b i l i t y <� f unc t i on ( t h e t a , data ) {

T <� l eng th ( data )
x <� 1
a <� d e t ( diag ( rep ( 1 , n ) ) + LFunc t ion ( t h e t a ) )
f o r ( t i n 1 :T ) {

A <� data [ [ t ] ]
x <� x � exp (2 � sum ( t h e t a � Fe a t u r e (A ) ) ) � d e t ( S [A, A] ) / a � 10^45

}
re turn ( x )

}
LogL ike l i hood <� f unc t i on ( t h e t a , data ) {

re turn (� l og ( O b s e r v a t i o n P r o b a b i l i t y ( t h e t a , data ) ) )
}
RegLogLike l ihood <� f unc t i on ( t h e t a , data ) {

re turn ( LogL ike l i hood ( t h e t a , data ) + sum ( t h e t a ^2 ) / 16)
}
NewRegLogLikelihood <� f unc t i on ( t h e t a , data ) {

re turn ( LogL ike l i hood ( t h e t a , data ) + sum ( t h e t a ^2 ) / 2)
}

# Maximum l i k e l i h o o d e s t i m a t i o n o f t h e l og l i n e a r i t y c o n s t a n t t h e t a .
s o l <� nlm ( LogLike l ihood , c (�8 , 6 ) )
mle <� s o l $ e s t im a t e
mle

# Learn ing curve o f t h e MLE
T <� 30
l e a r n i n gCu r v e <� matrix ( rep ( 0 , 2 � T ) , 2 )
r egLea rn i ngCu rve <� matrix ( rep ( 0 , 2 � T ) , 2 )
NewRegLearningCurve <� matrix ( rep ( 0 , 2 � T ) , 2 )
t a r g e t <� f unc t i on ( t h e t a ) {

re turn ( LogL ike l i hood ( t h e t a , data ) )
}
r e gT a r g e t <� f unc t i on ( t h e t a ) {

re turn ( RegLogLike l ihood ( t h e t a , data ) )
}
NewRegTarget <� f unc t i on ( t h e t a ) {

re turn ( NewRegLogLikelihood ( t h e t a , data ) )
}
f o r ( i i n 1 :T ) {

i f ( i > 1 ) {
help <� data
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}
data <� rep ( l i s t ( 0 ) , i )
i f ( i > 1 ) {

f o r ( j i n 1 : ( i � 1 ) ) {
data [ [ j ] ] <� help [ [ j ] ]

}
}
data [ [ i ] ] <� s o r t ( SamplingDPP ( lambda , e i g e n v e c t o r s ) )
l e a r n i n gCu r v e [ , i ] <� nlm ( t a r g e t , c (�10 , 6 ) ) $ e s t im a t e
pr in t ( l e a r n i n gCu r v e [ , i ] )
r e gLea rn i ngCu rve [ , i ] <� nlm ( r e gTa r g e t , c (�10 , 6 ) ) $ e s t im a t e
pr in t ( r e gLea rn i ngCu rve [ , i ] )
NewRegLearningCurve [ , i ] <� nlm ( NewRegTarget , c (�10 , 6 ) ) $ e s t im a t e
pr in t ( NewRegLearningCurve [ , i ] )

}
p l o t ( NewRegLearningCurve [ 1 , 1 : 3 0 ] , x l a b ="Number␣ of ␣ sample s " , y l a b =" E s t ima t e
␣␣␣␣␣ f o r ␣ f i r s t ␣ p a r ame t e r " ,

pch =5 , y l im=c ( �10 .85 , �5 .5 ) )
po in t s ( l e a r n i n gCu r v e [ 1 , 1 : 3 0 ] , pch =16)
po in t s ( r e gLea rn i ngCu rve [ 1 , 1 : 3 0 ] , pch =1)
l i n e s ( c ( 0 , 45 ) , c (�10 , �10) , c o l=" r ed " )
l egend ( " t o p r i g h t " , i n s e t = . 05 , l egend=c ( "MLE" , "Weak␣ r e g u l a r i s a t i o n " , " S t r ong
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r e g u l a r i s a t i o n " )

, pch=c ( 16 , 1 , 5 ) )
p l o t ( NewRegLearningCurve [ 2 , 1 : 3 0 ] , x l a b ="Number␣ of ␣ sample s " , y l a b =" E s t ima t e ␣ f o r
␣␣␣␣␣ second ␣ pa r ame t e r " ,

pch =5 , y l im=c ( 2 . 8 , 7 ) )
po in t s ( l e a r n i n gCu r v e [ 2 , 1 : 3 0 ] , pch =16)
po in t s ( r e gLea rn i ngCu rve [ 2 , 1 : 3 0 ] , pch =1)
l i n e s ( c ( 0 , 45 ) , c ( 6 , 6 ) , c o l=" r ed " )
l egend ( " b o t t om r i g h t " , i n s e t = . 05 , l egend=c ( "MLE" , "Weak␣ r e g u l a r i s a t i o n " , " S t r ong
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ r e g u l a r i s a t i o n " ) ,

pch=c ( 16 , 1 , 5 ) )

# NEEDS: MCMC a l go r i t hm .

# We want t o i n t r o d u c e t h e f i r s t example o f Bayes ian parame te r e s t i m a t i o n f o r
# DPPs . We s t a r t by e s t i m a t i n g t h e l og l i n e a r i t y c o n s t a n t o f t h e q u a l i t i e s � a
# parame te r f o r which we ’ ve a l r e ad y s u c c e s s f u l l y done MLE.

# Run MCMC and c r e a t e a p l o t t h a t a l s o shows t h e c o o r d i n a t e s o f t h e MLE.
# P u t t i n g a c e n t e r e d Gauss ian as a p r i o r .
t a r g e t <� f unc t i on ( t h e t a ) {

x <� exp (�sum ( t h e t a ^2 ) / 2^4) � Ob s e r v a t i o n P r o b a b i l i t y ( t h e t a )
re turn ( x )
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}

# Sampl ing a 200 samples t o f i n d a r e a s onab l e s t a r t i n g p o i n t . A g r e s s i t i v i t y o f
# t h e MH i s a d j u s t e d so t h a t a r e a s onab l e a c c ep t e n c e r a t e i s o b t a i n e d .
x <� MCMC( t a r g e t , c ( 0 , 0 ) , MH=TRUE, 10^2 , a l p h a =10)
p l o t ( t ( x ) , pch =16 , c o l= ’ b l a ck ’ , cex =0 . 5 , x l a b =" t h e t a 1 " , y l a b =" t h e t a 2 " )
po in t s ( mle [ 1 ] , mle [ 2 ] , pch =4 , lwd =3 , c o l=" g r een " )
po in t s (mean ( x [ 1 , 1 0 0 : 2 0 0 ] ) , mean ( x [ 2 , 1 0 0 : 2 0 0 ] ) , pch =4 , lwd =3 , c o l=" r ed " )
# Ca l c u l a t i n g t h e a c c ep t e n c e r a t e f o r t h e MH a l go r i t hm ; 25�75% i s d e s i r e d .
sum ( x [ , �1] ! = x [ , 1 : ( l eng th ( x ) / 2 � 1 ) ] ) / ( l eng th ( x ) � 2)
# P l o t t h e a u t o c o r r e l a t i o n f u n c t i o n .
a c f ( x [ 1 , 1 : 1 0 0 ] , 40)

# Second burn i n p e r i o d c o n s i s t i n g o f 10^3 samples which w i l l be used t o t une
# t h e p ropo sa l . The parame te r a lpha i s a d j u s t e d such t h a t a r e a s onab l e
# ac c ep t an c e r a t e i s o b t a i n e d .
x2 <� MCMC( t a r g e t , c (mean ( x [ 1 , 1 0 0 : 2 0 0 ] ) , mean ( x [ 2 , 1 0 0 : 2 0 0 ] ) ) , MH=TRUE, 10^3 ,

a l p h a =2)
p l o t ( t ( x2 [ , 2 5 0 : 1 0 ^ 3 ] ) , pch =16 , c o l= ’ b l a ck ’ , cex =0 . 5 , x l a b =" t h e t a 1 " ,

y l a b =" t h e t a 2 " )
po in t s ( mle [ 1 ] , mle [ 2 ] , pch =4 , lwd =3 , c o l=" g r een " )
# Ca l c u l a t i n g t h e a c c ep t e n c e r a t e f o r t h e MH a l go r i t hm ; 25�75% i s d e s i r e d .
sum ( x2 [ , �1] ! = x2 [ , 1 : ( l eng th ( x2 ) / 2 � 1 ) ] ) / ( l eng th ( x2 ) � 2)
# P l o t t h e a u t o c o r r e l a t i o n f u n c t i o n .
a c f ( x2 [ 1 , 1 : 1 0 0 0 ] , 100 , main=" A u t o c o r r e l a t i o n ␣ f o r ␣ a l ph a =10 " )

# Doing PCA wi t h t h e f i r s t 100 samples i n o rde r t o t une t h e p ropo sa l .
l i b r a r y ( s t a t s )
pc <� prcomp ( t ( x2 [ , 2 5 0 : 1 0 ^ 3 ] ) )
sd <� t ( pc [ [ 2 ] ] ) %�% diag ( c ( pc [ [ 1 ] ] [ [ 1 ] ] , pc [ [ 1 ] ] [ [ 2 ] ] ) ^ 2 ) %�% pc [ [ 2 ] ]
# Le t t h e main MCMC run w i t h 10^4 samples . A l so a n i c e p l o t i s c r e a t e d .
xnew <� MCMC( t a r g e t , c (mean ( x [ 1 , ] ) , mean ( x [ 2 , ] ) ) , MH=TRUE, 10^4 , a l p h a =sd )
p l o t ( t ( xnew ) )
l i b r a r y ( RColorBrewer )
r f <� c o l o rRampPa l e t t e ( rev ( b rewer . p a l ( 11 , ’ S p e c t r a l ’ ) ) )
r <� r f ( 6 4 )
k <� kde2d ( xnew [1 , ] , xnew [2 , ] , n =1000 , l ims = c (�12 , �3, �1, 8 ) )
image ( k , c o l=r , x l im=c (�12 , �8 .5 ) , y l im=c ( 5 , 7 ) )
po in t s ( mle [ 1 ] , mle [ 2 ] , pch =4 , lwd =3 , c o l=" g r een " )
po in t s (�10 , 6 , pch =4 , lwd =3 , c o l=" wh i t e " )
# Ca l c u l a t i n g t h e a c c ep t e n c e r a t e f o r t h e MH a l go r i t hm ; 25�75% i s d e s i r e d .
sum ( xnew [ , �1] ! = xnew [ , 1 : ( l eng th ( xnew ) / 2 � 1 ) ] ) / ( l eng th ( xnew ) � 2)
# P l o t t h e a u t o c o r r e l a t i o n f u n c t i o n .
a c f ( xnew [ 1 , 1 : 1 0 0 0 ] , 100 , main=" A u t o c o r r e l a t i o n ␣ f o r ␣ a l ph a =10 " )
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# Gelman�Rubin d i a g n o s t i c :
# Run a second cha in :
newS t a r t <� mvrnorm (1 , s t a r t , 2 � sd )
xnew2 <� MCMC( t a r g e t , newSta r t , MH=TRUE, 10^4 , a l p h a =sd )
i n s t a l l . packages ( " coda " )
l i b r a r y ( coda )
comb inedcha in s <� mcmc . l i s t (mcmc( data= t ( xnew ) ) , mcmc( data= t ( xnew2 ) ) )
gelman . diag ( comb inedcha in s )
gelman . p l o t ( combinedcha ins , y l im=c ( 1 , 1 . 5 ) , y l a b ="R�h a t ␣ v a l u e " , lwd =1 . 5 )

# S t a b i l i t y a n a l y s i s
# De f i n e Po i s son p o i n t p r o c e s s
po i s son <� f unc t i on ( p , n ) {

re turn ( ( 1 : n ) [ run i f ( n ) < p ] )
}
po i s son ( 0 . 2 , 20)
symmdiff <� f unc t i on ( a , b ) {

re turn ( union ( s e t d i f f ( a , b ) , s e t d i f f ( b , a ) ) )
}

T <� 8
p e r t u r b e dDa t a 1 <� rep ( l i s t ( 0 ) , T )
s amp l eS i z e <� 8
f o r ( i i n 1 : s amp l eS i z e ) {

# Gene ra t i on o f da ta
f o r ( i i n 1 :T ) {

p e r t u r b e dDa t a 1 [ [ i ] ] <� s o r t ( SamplingDPP ( lambda , e i g e n v e c t o r s ) )
}
f o r ( i i n 1 :T ) {

p e r t u r b e dDa t a 1 [ [ i ] ] <� symmdiff ( p e r t u r b e dDa t a 1 [ [ i ] ] , po i s son (1 / 400 , n ) )
}
# E s t ima t o r s
t a r g e t <� f unc t i on ( t h e t a ) {

re turn ( LogL ike l i hood ( t h e t a , p e r t u r b e dDa t a 1 ) )
}
pr in t (nlm ( t a r g e t , c (�10 , 6 . 5 ) ) $ e s t im a t e )
t a r g e t <� f unc t i on ( t h e t a ) {

re turn ( RegLogLike l ihood ( t h e t a , p e r t u r b e dDa t a 1 ) )
}
pr in t (nlm ( t a r g e t , c (�10 , 6 . 5 ) ) $ e s t im a t e )
t a r g e t <� f unc t i on ( t h e t a ) {

re turn ( NewRegLogLikelihood ( t h e t a , p e r t u r b e dDa t a 1 ) )
}
pr in t (nlm ( t a r g e t , c (�10 , 6 . 5 ) ) $ e s t im a t e )

}



Nomenclature

argmax The argmax function selects one arbitrary maximiser given it exists.

F2 The finite field f0; 1g with the addition and multiplication modulo 2.

N The natural numbers.

R The real numbers.

Rd The Euclidean d -dimensional space with Euclidean norm k�k.

RN�Nsym;C The set of non negative definite symmetric N �N matrices.

RC The set of non negative real numbers Œ0;1/.

Z2 The cyclic group consisting of f0; 1g with the addition modulo 2.

E.˛/ The exponential distributionwith parameter˛ > 0 given by the density1Œ0;1/.s/˛e�˛s .

U.S/ The uniform distribution on a set S with respect to some measure that should
be clear from the context.

rk The rank of a matrix.

sgn Either the sign of a number or the parity of a permutation.

span This denotes the span of a collection of vectors.

A � B We write A � 0 if A is non negative definite and A � B if A � B � 0 where
A and B are symmetric matrices.

D2f Hessian matrix, i.e. second derivative of a function f W Rd ! R.

L2.�/ The space of square integrable functions with scalar product

.�;  /L2.�/ D

ˆ
�.x/ .x/�.dx/:
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O.g.x// We write f .x/ D O.g.x// if f .x/ �Mg.x/ for all x � x0 and oneM > 0.

Sn The permutation group of f1; : : : ; ng or other sets with n elements.

x  y This denotes the assignment of y to the variable x in pseudocode.

x � P This denotes that x is a realisation of a random variable X with law P.
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